Welcome!

Hearing / Dialogue

Regarding AI-decision support tools for automatic detection and segmentation of colorectal cancer (primary and lymph node metastases) in digital pathology images and the integrated diagnostic processes

2020-01-21

Purpose of Hearing

- To present Karolinska and the Project
- To create interest and understanding of the project by Industry
 - -> to participate in RFI
- Ultimatelly leading to Development an Implementation of AI-tools at Karolinska
- Creating values for all parties involved

Agenda

- Welcome
- Presentation Karolinska Universitetslaboratoriet Patologi Cytologi, incl clinical partner Semmelweis - 10 min
- Automatic detection and segmentation of colorectal cancer 30 min
- IT infrastructure Digital pathology 10 min
- Process forward est timeline, RFI document 15 min
- Q&A

Environment for Research and Innovation

Attila Szakos Clinical Pathology and Cytology Site Huddinge

Environment and organisation 1

Stockholm's County Council

• Responsible for the specialized and hospital health care

• Karolinska University Hospital

 Responsible for highly specialized health care and 90 % of health care education in Stockholm (Karolinska Institute)

• Function Karolinska University Laboratories

- Comprises all medical laboratory professions
- The only non-private medical laboratory in Stockholm

Environment and organisation 2

• Function Area Clinical Pathology and Cytology

- 4 sites, 5 Function Units
- 430 employees, 300000 cases/year, 500 million SEK/year
- Nationally accredited laboratory and 5 diagnostic areas
- Coordinated quality the workload or personnel can be redistributed between Function Units
- Digitalization in progress
- 3rd largest scientific activity at Karolinska
- Involved in three major AI projects

Environment and organisation 3

• Function Unit Huddinge

- 190 coworkers/45 doctors in 5 (+1) units
- 180 000 cases/year, continuously growing
- Subspecialized in whole depth
- Advanced immunohistochemistry
- 15 diagnostic subspecialties (responsible for 9 over sites)
- 4 innovative projects in digitalization

Medical teams	Histology lab *	IHC *	Kidney lab	MOL *	FACS	EM	Cytology *	HPV	Secretary	Morgue +
Hemato	own staff				own staff					
Gastro *	own staff									
Hepato *	own staff									
Pancreatic *	own staff									
Renal/allograft			own staff							
Perinatal	own staff						-			own staff
Respiratory										
Gynecologic	own staff						-			
Urogenital *	own staff									
(Dermato)	(own staff)									
ENT & others (CUP)					•					
Cytopathology *										
Autopsy					•					own staff

Opportunities for Innovation at Different Levels 1

Karolinska University Hospital

Own agency for innovation and development

Karolinska University Laboratories

- Financing internal developmental projects
- Coordinative, operative and administrative support

Opportunities for Innovation at Different Levels 2

• Clinical Pathology and Cytology including Function Unit Huddinge

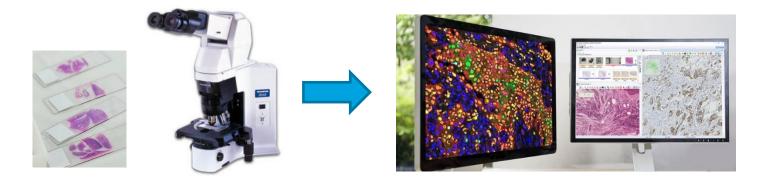
- Own laboratory and administrative section for research
- Close relation and communication with the clinicians in all sub-specialties
- Residents (partly centrally financed, obligatory developmental project according to regulations)
- Representation in most national boards within healthcare
- International collaborative partners (Semmelweis University, Queen Mary Hospital, etc)

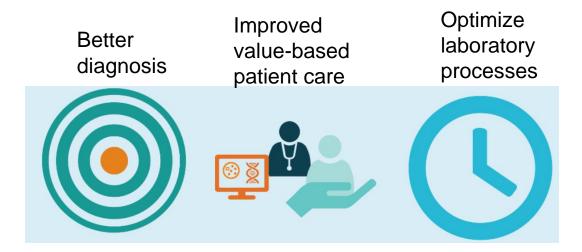
Semmelweis University Budapest, Hungary

- 1st and 2nd Department of Pathology
- Full/partial digitalization
- 1/3 of cases, personnel and infrastructural resources in a previous AI project
- Collaboration 20 years research 10 years clinical

Al-decision support tools for automatic detection and segmentation of colorectal cancer (primary and lymph node metastases) in digital pathology images and the integrated diagnostic processes

> Carlos Fernandez Moro Pathologist, Karolinska University Laboratory




Clinical pathology

- Became decisive for oncological care.
- Sub-specialization (diagnostic areas), advanced diagnostic methods.
- Only partly automated mostly on the laboratory side.
- The results must be reproducible and evidence based quality assurance and standardization.
- Cancer registers must be supplied with accurate data research and public health planning.

Clinical pathology goes digital & computational

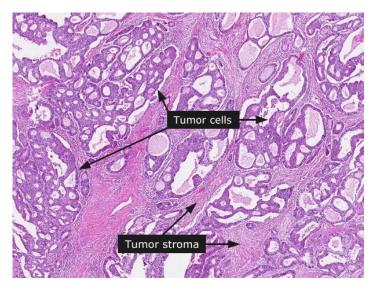
https://www.usa.philips.com/healthcare/resources/landing/what-is-computational-pathology

AI digital pathology diagnostic support tools

Cancer projections are growing — Increasing number of probes.

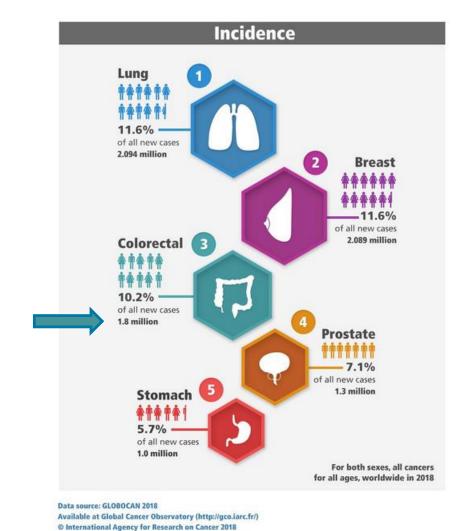
Surgical techniques and oncological treatments are improving (personalized medicine) — Increasing complexity and reporting requirements.

Shortage of pathologists worldwide → Digital diagnostic tools our best chance!

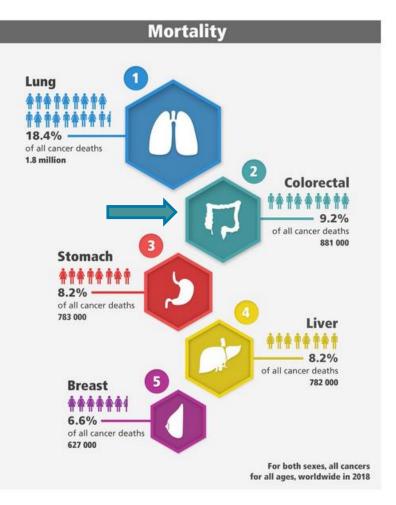


Colorectal cancer

• Starts in the colon or the rectum.

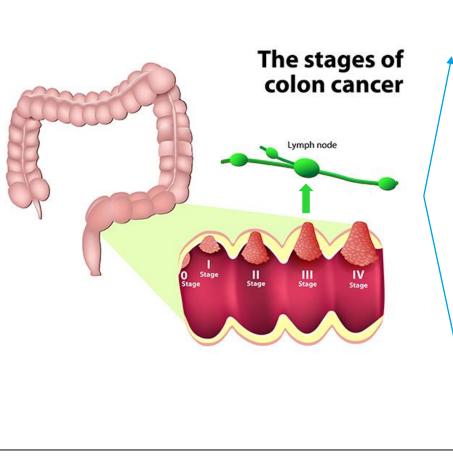

• 96% adenocarcinoma (histological type)

New cancer cases worldwide 2018

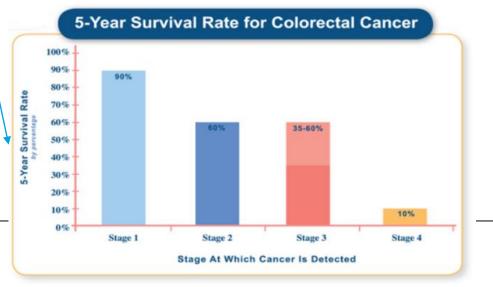

Colorectal cancer rates

Rank	Country	Age-standardised rate per 100,000
1	Hungary	51.2
2	South Korea	44.5
3	Slovakia	43.8
4	Norway	42.9
5	Slovenia	41.1
6	Denmark	41.0

Sweden: 6721 newly diagnosed patients in 2016


Cancer deaths worldwide 2018

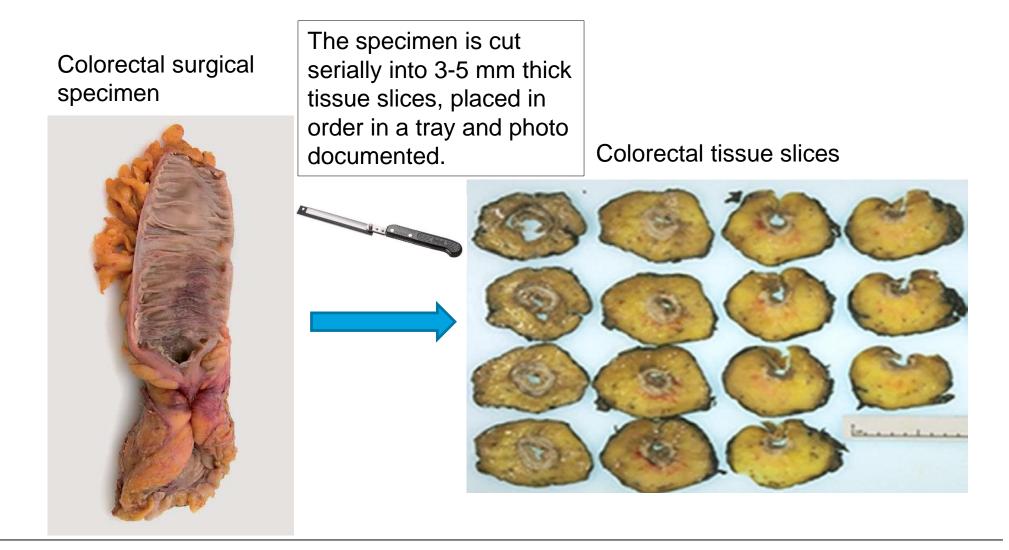
5-year survival (all stages included): 65 %



Tumor stage determines treatment and prognostic stratification

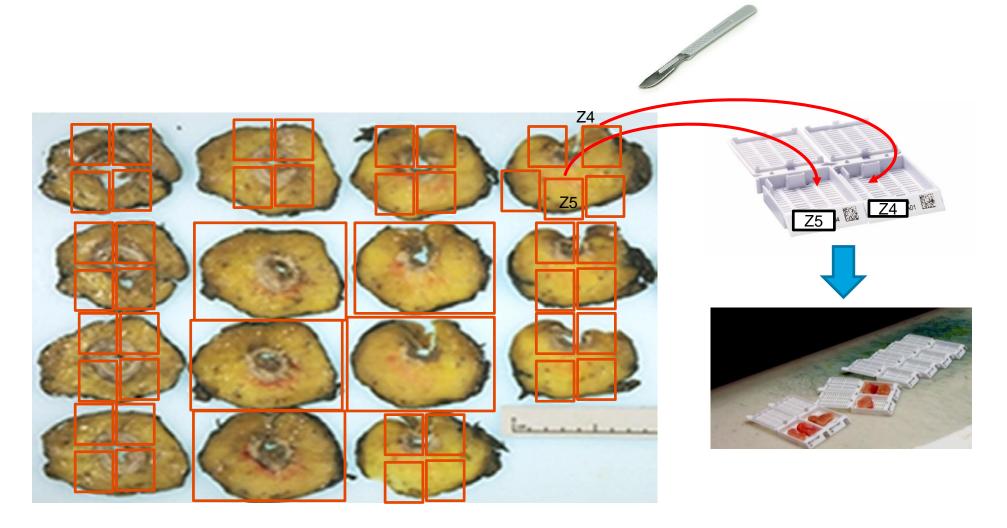
Treatment for colorectal cancer by stage

	STAGE	SURGERY	CHEMOTHERAPY / BIOLOGICS	RADIATION	INTERVENTIONAL RADIOLOGY
1	Stage 0	Yes	No	No	No
	Stage 1	Yes	No	No	No
	Stage 2	Yes	Yes, for rectal and high risk colon cancers. FOLFOX (5- FU/Leucovorin/Oxaliplatin) or CapeOx (Capecitabine/ Oxaliplatin)	Yes, for rectal cancer. Given in tandem with 5-FU or Xeloda	No
	Stage 3	Yes	FOLFOX or CapeOx	Yes, for rectal cancer. Given in tandem with 5-FU or Xeloda	No
	Stage 4	Yes, if the tumor is obstructive or blocking the bowel. No, if the tumor is not blocking the bowel	FOLFOX, FOLFIRI, FOLFIRINOX, Irinotecan, Avastin, Erbitux, Vectibix, Zaltrap, Stivarga, Lonsurf, Cyramza	Yes, for rectal cancer and in certain other cases	Possibly. Options could be Radio Frequency Ablation (RFA), Stereotactic Body Radiation Therapy (SBRT), or chemoembolization


K

Pathological diagnosis in colorectal cancer

- Precise **tumor staging**.
- Further **management of the patient**:
 - Lymph node metastasis is a crucial factor to decide the use of adjuvant chemotherapy after surgical resection.
- Multidiscipinary team conference feedback information & quality assurance of:
 - Preoperative radiological diagnosis.
 - Quality of the surgical procedure.
 - Result of preoperative oncological treatment.



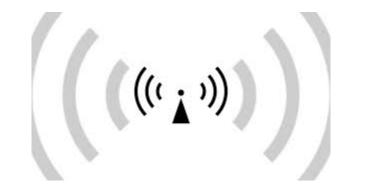
Pathological diagnosis – Macroscopic assessment and grossing

Pathological diagnosis – Tissue sampling for histology

Pathological diagnosis – Examination of histological slides (H&E, 40 – 100+ per case)

Clinical requirements

- Precise tumor staging
- Further management of the patient
- Multidisciplinary
 team conference


Pathological diagnosis

in colorectal cancer – Minimal dataset

Adenocar	adium – operationsfyn cinom	🗆 Nej 🔲 Ja	3				
Ance om tur	mören är ett adenocarcinom el	ller el. Enbart ac	denocarcinom skall rapp	orteras till registret.			
*	gen gjord på storsnitt	🗆 Nej 🗖 J					
Standardis	serad svarsmall använd	🗆 Nej 🗖 J	a				
Gradering	av den mesorektala	A=Kompl	ett/mesorektal				
fascian – O	OB \$ ifylls endast	B=Nästan komplett/intramesorektal					
för TME-re	ektalpreparat	C=Inkomplett/i muskelplanet					
		D=Ej bedömbar					
Red	ömningen utförd på	Färskt pr	enarat				
bedonningen uttord på		Fixerat preparat					
T-stadium	n	N-stadium					
TX 🛛		NX					
D T0		N0	Om inga positiva lymfk	örtlar finns och TD=Ja blir N-stadium N	11		
🗆 T1 🗅	T1sm1	N1					
	T1sm2	N2					
_	T1sm3						
T2 T2		-					
🗖 T3 🛶	🗖 T3A 🔲 T3B	T3C	□ 13D Avstand	till fri serosayta, mm			
TT T4 ->	Serosagenomväxt	🗆 Nej 🗖 J					
	Överväxt till annat organ						
Antal unde	ersökta körtlar:		u itiva körtlar				
Mucinös cancer		🗆 Nej 🖬 Ja					
TD (diskreta fria tumörhärdar utan lymfkörtel- eller kärlrest)		🖸 Nej 🔲 Ja, antal					
Perineural	växt påvisad	🗆 Nej 🔲 J	a				
Kärlinväxt	påvisad	🗆 Nej 🔲 J	a 🗳 Föreligger ex	tramural veninväxt (EMVI)? 🔲 N	Nej 🔲 Ja		
Differentieringsgrad		Högt/med	delhögt = Low grade	Lågt/odiff = High grade			
Minsta cirl	kumferentiella resektionsm	arginal	, mm (anges I mi	n eller del av mm)			
Minsta lon	gitudinella resektionsmarg	inal	, mm (avstånd I mm	el del av mm till närmaste resektionsr	and Itarmväggen)		
Mikroskop	oiskt tumörfri resektionsran	d🔲 Nej 🔲 J	a	Ej bedömbart			
Tumörregr	ession enligt AJCC	🔲 Inga viabl	la cancerceller				
	ast för neoadjuvant	Enstaka små grupper av cancerceller					
behandlade	tumörer)	 Kvarvarande cancer överskuggas av fibros 					
		-	eller ingen påverkan p				
	tokemiska färgningar för M	MR-proteiner	(endast då kliniker begär	t detta)			
Ej utför	t 🔲 Utfört:						
Utfall av in	nmunhistokemiska färgning	gar för MMR-p	proteiner				
MLH1	(+) Bevarad	(-) Förlus		Svag/heterogen	Ej bedömbar		
PMS2	(+) Bevarad	(-) Förlus		Svag/heterogen	Ej bedömbar		
MSH2	(+) Bevarad	(-) Förlus		Svag/heterogen	Ej bedömbar		
MSH6	(+) Bevarad	(-) Förlus	t	Svag/heterogen	Ej bedömbar		
Sammanfa	attande bedömning av MM	R-funktion:					
Normal	Defekt	Oklar/obe	estämhar				

Current challenges in the pathological diagnosis of colorectal cancer

- Time and resource **intensive work-loads**:
 - The pathologist has to examine a high number (40 to 100+) of slides for each colorectal cancer probe including the accompanying lymph nodes, which takes several hours.
- A **high diagnostic accuracy** is mandatory to treat patients correctly.
 - Overlooking regions of cancer cells may lead to under-staging and under-treatment of patients.

Current challenges in the pathological diagnosis of colorectal cancer

• Short turnaround times:

- The multidisciplinary team conference needs to take decision on further treatment soon after the operation.
- **Shortage of pathologists** subspecialized in gastrointestinal pathology:
 - Special, dedicated training is required.
 - Medical students and trainees in pathology may opt for other specialties and diagnostic areas with better work-life balance and time for research.

How can Al-based automatic tumor detection enhance pathologists?

> Optimizing the work-loads:

- The pathologist dedicates a major amount of time and energy screening and eye-balling the numerous slides searching for cancer cells.
- This repetitive, time- and resource-consuming task can be significantly streamlined by the AI.

> Securing the diagnostic accuracy:

• By graphically signaling to regions of high cancer cell probability.

How can Al-based automatic tumor detection enhance pathologists?

> Shortening turnaround times:

• The use of automatic tumor detection can reduce significantly the pathologist time needed for case review (screening, eye-balling).

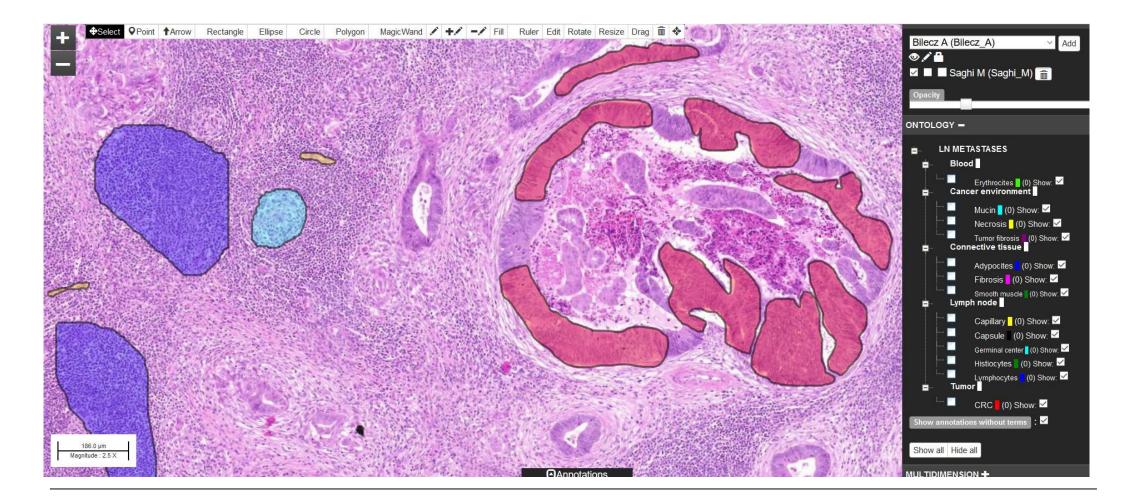
> More subspecialized gastrointestinal pathologists:

• By AI supported work-loads and improved working conditions.

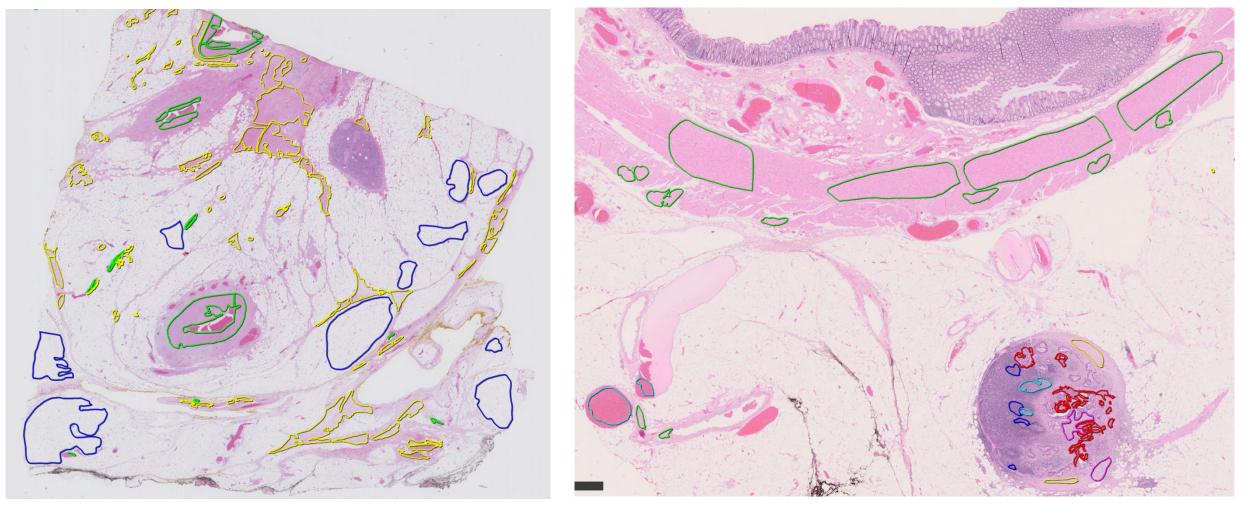
R&D Feasibility Study - AI for automatic tumor detection - colorectal cancer (2015-2018)

- Creation of a large multi-class **repository** of pathology annotations (ground truth).
- Training of AI models
 - Sensitivity much more important than specificity at this stage
- Evaluation of AI models for tumor detection.
- Hospital partner: Semmelweis University Hospital, Budapest

• R&D Collaboration with Saab (industry) and Queen Mary University of London (academy).



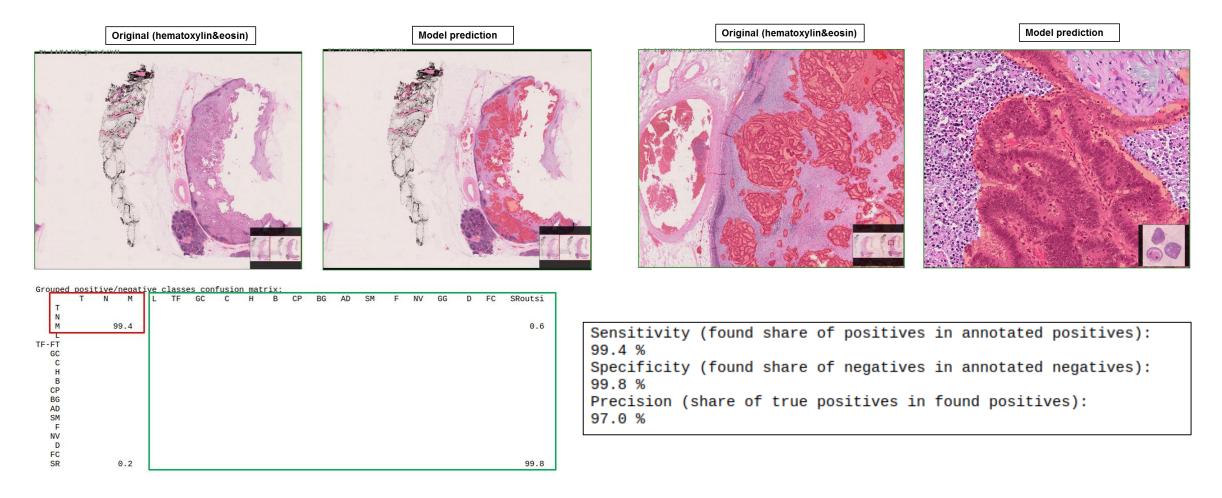
Available: Multi-class annotation of whole slide images – Lymph node metastases



[™]

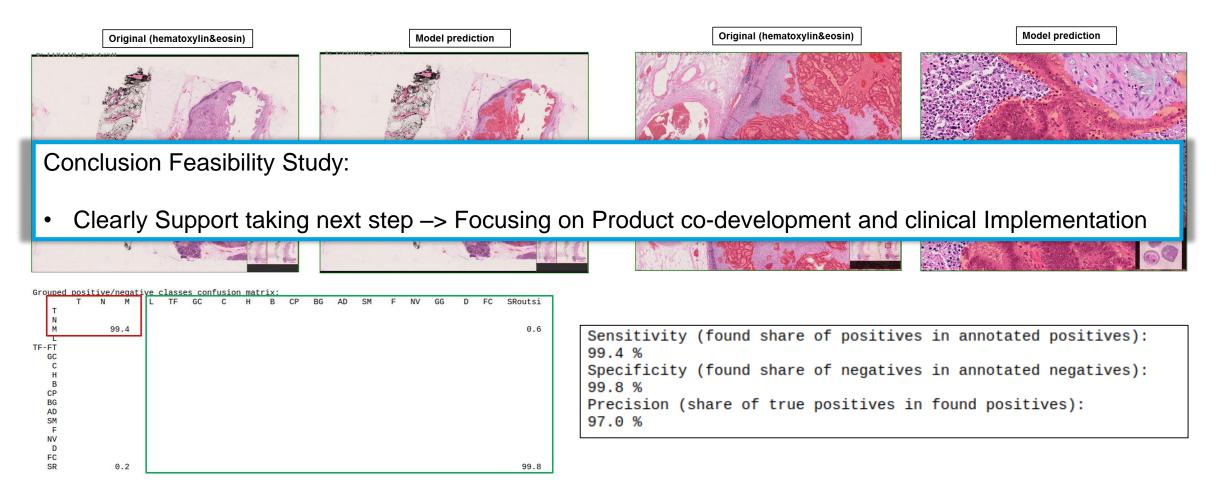
Available: Multi-class annotation of whole slide images – Lymph node metastases

Available: Multi-class annotation of whole slide images – Soft tissue components


Available: Large repository of high-quality pathology annotations of CRC lymph node metastases

- The dataset: 646 WSIs, +70 000 annotations
- Number of pathology annotations by class:

40453		
4774		
1492		
2280		
4169		
2930		
1687		
768		
1937		
1584		
2544		
1206		
917		
1342		


R&D Feasibility Study - AI for automatic tumor detection - colorectal cancer

R&D collaboration with SAAB and Queen Mary University of London

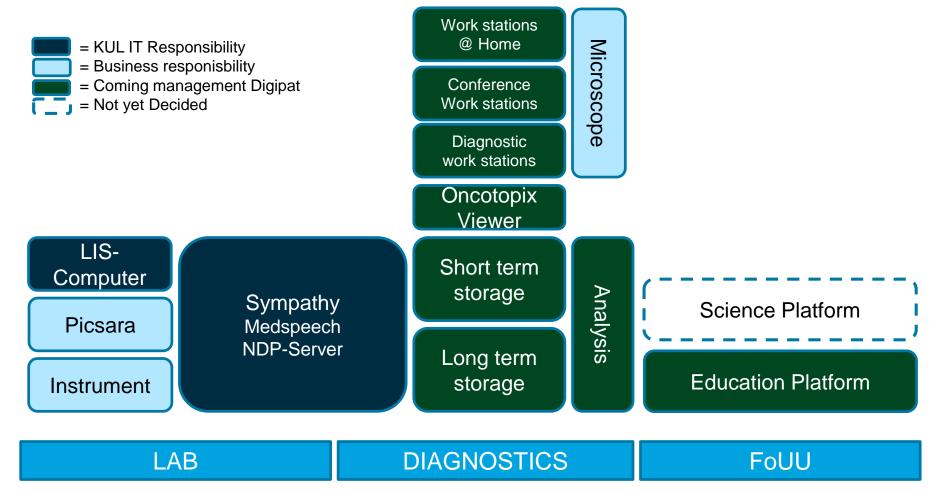
R&D Feasibility Study - AI for automatic tumor detection - colorectal cancer

R&D collaboration with SAAB and Queen Mary University of London

Ambition going forward:

- Identify and Select Optimal Industry Partner (/consortium) through procurement
- Co-development of an advanced Al-based diagnostic support tool for automatic tumor detection in hematoxylin-eosin stained slides of colorectal cancer.
- Clinical validation of Al-tool
- CE-marking for clinical use of AI-tool by Industry partner
- Implement and integrate AI-tool within the digital clinical diagnostic work-flow
- Improve/upgrade AI-tool through continuous feedback-loop from pathologists
 - Misclassified regions, new tissue morphologies, etc.
- Commercialize AI-tool to benefit pathology departments worldwide by industry partner

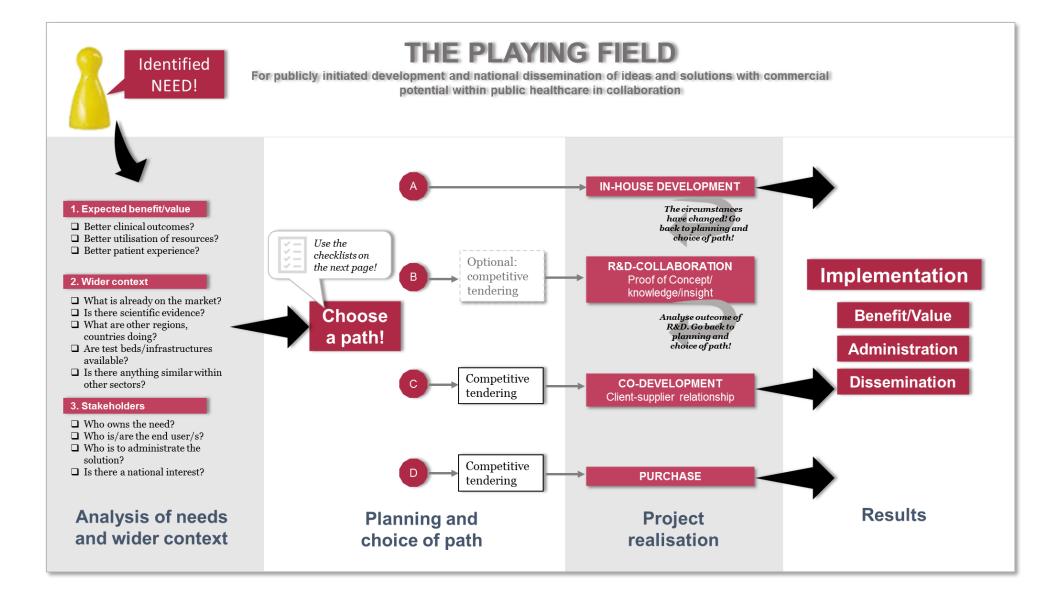
Why Pathology @ Karolinska?


- Outstanding expertise in diagnostic pathology.
- Extensive, world-class repository of annotated whole slide images (ground truth) from two major European university hospitals (Karolinska Stockholm and Semmelweis Budapest):
 - Precise, high-quality annotations of both cancer cells and surrounding benign tissues performed and curated by pathologists.
 - Comprehensive, flexible, organ- and tumor-type agnostic, multiclass annotation schema, designed to be able to generalize, with additional training data, to further organs and tumor types, like gastric, liver, pancreatic, breast and prostatic cancer, etc.

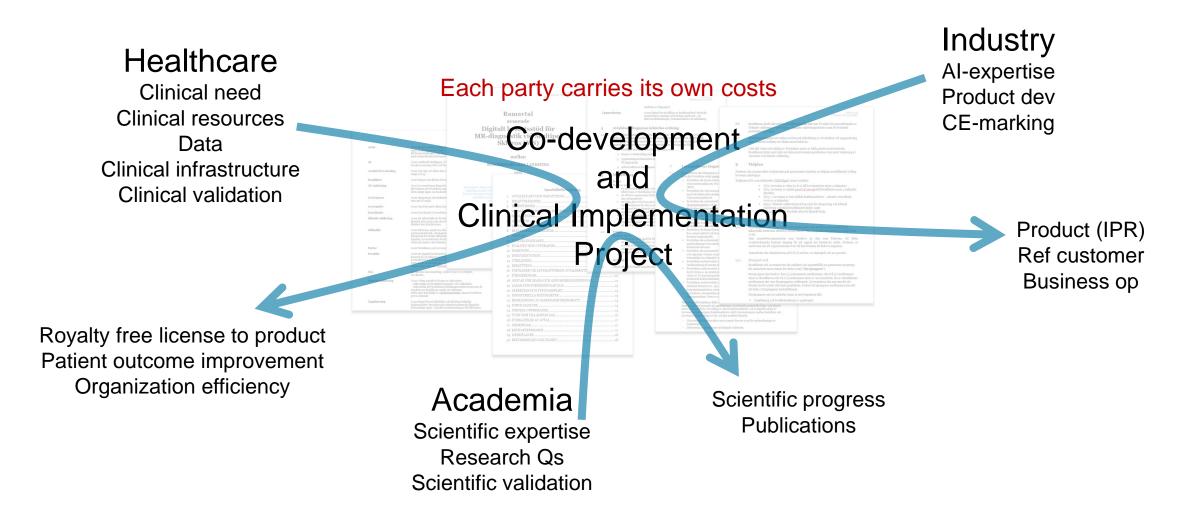
Why Pathology @ Karolinska?

- Engagement of our teams of expert clinical pathologists in the processes for AI development, test, validation and continuous improvement (feedbackloop).
- Extensive experience in digital pathology AI research, knowledge transfer and interaction with AI/CS/IT teams.
- Commitment to excellence in healthcare provision, education, innovation, research and long-term collaboration with our hospital, academic and industry partners.
- Extensive archive of pathology slides and new prospective probes comprising all organ systems and tumor types, both hematoxylin&eosin and immunohistochemistry, and its potential connection with the associated, high-quality clinical data.

The system management objects



Technical environment



Context and Process Forward

General concept and direction of <u>co-development</u> process and business agreement:

Process forward – Estimated timeline

- 1. Hearing/dialogue
- 2. Dead-line RFI 31st of January
- **3.** 1-to-1 dialogues during february
- 4. K-analysis and strategy STOP/GO
- 5. External referral + dialogue *during March*
- 6. K-analysis STOP/GO
- 7. Publication of RFP 1st of May
- 8. Deadline RFP 1st of June
- 9. K-analysis Tender STOP/GO
- 10. Anouncement 1st of July
- 11. Feedback/dialogue
- 12. Agreement signing August

Official procurement documents and contracts will be in SWEDISH

RFI Questions

- Q1: Short description of company
- Q2: Current status of developments of digital pathology AI decision support tools (product)?
 - Q2.1 Currently available CE-marked product(s)?
 - Q2.2 Scope/functionalities of product(s) under development and estimated time to market?
- Q3: Experiences from co-development of AI-products and working with diagnostic processes and related clinical IT-environment?
- Q4: What are your company's thoughts on below described 'General concept and direction of co-development process and business agreement'?
- Q5: What are your company's thoughts on, and potential experiences from, cross- European collaboration, also with regards to Q4?
- Q6: Would your company want Karolinska to publish your company name and engagement in this RFI on our homepage, to potentially facilitate potential B2B collaborations?

Q and As from the Hearing:

Q: What is the estimated timeline for the project?

A: Difficult to say at this stage, will likely depend on what stage and maturity of potential on-going development at Industry partner, RFI will hopefully give better understanding of this.

Q: Will it be possible to use cloud for handling Images/data?

A: Anonymized images/data will be possible to transfer and process in the cloud.

Q: What is the Scope of the project, is it algorithm development only?, including a viewer? Including hardware?

A: The high-level scope is a software product including the AI-algorithm and to be specified functionalities that will be integrated in relevant Karolinska target IT-infrastructure and work-flows, to be further discussed during RFI. Q: What is the format of the data of existing image repository?

A: Part of the dataset is composed of Hamamatsu WSIs and annotations (Hamamatsu viewer), the other is made of 3DHistech WSIs and their annotations are stored in Cytomine.

Q: Would it be possible to obtain examples of slides?

A: Maybe later in the process.

Q: Is there associated clinical data available for the slides in the repository?

A: Current images in the repository are currently disconnected from other clinical data. An amendment has been sent to Etikprovningsmyndigheten (Ethical board) to be able to work with pseudonymized images, opening a path to future connections with clinical data.

Q: The algorithms developed in the previous R&D feasibility study with SAAB and Queen Mary, will it be available for further development in this project?

A: The R&D algorithm belongs to SAAB. Karolinska (and its clinical partner Semmelweis) are the sole owner of the annotated image repository.

Q: Does Karolinska have more clinical partners and sites to test the developed algorithms on?

A: Currently Semmelweis, but potentially more in the future

Q: Will additional data be annotated?

A: Yes

Q: What reagent platforms do you use for staining?

A: Roche, DACO, etc, multiple vendors.

Q: Are you demanding a royalty free license for Semmelweis as well?

A: will be discussed during the RFI, general direction is that the partners providing resources and expert knowledge should gain accordingly from the project.

Q: How are the annotated images stored and is it possible to use cloud services?

A: Currently stored at Karolinska, cloud storage depend on anonymization of data and local Policy, will need to be discussed further.

Q: Does Karolinska have compute power (GPUs)?

A: No, industry partner is expected to handle the necessary computing power for algorithm development.

Q: How will transfer of data be handled?

A: Legaly the data will belong to Karolinska, and a specific agreement will be signed (Swedish: Personuppgiftbiträdes-avtal, PUB-avtal), which regulate the use of the data for the specific purpose. How data will technically be transferred will need to be discussed specifically in due time, there are multiple options.

Q: New regulation will demand storage and access to data for the CE-marked product, how will that work?

A: Data for algorithm development will be stored at Karolinska for the demanded time-frame (for research data), and we will need to further look into how this works for the Industry partner.

Q: How experienced are Karolinska w r t clinical validation?

A: Strong experience from all kinds of clinical validation, accredited lab etc etc

Q: How burning is this problem that you intend to solve with the Al-image analysis tool?

A: Work-flow is major issue, very time-consuming work, availability of current and future senior pathologists is a concern, pathology report key for staging and treatment decision.

Q: How has the annotation been performed?

A: A team of pathologists from Karolinska and a team of pathologists from Semmelweis performed the annotations, each pathologist working on different images. For many images, after annotation, a second pathologist expert in gastrointestinal pathology reviewed and curated the annotations.

Q: How do you see the potential to apply algorithms to other tumor/cancer forms?

A: Great potential to scale to other tumors/cancers with additional ground truth (annotations).

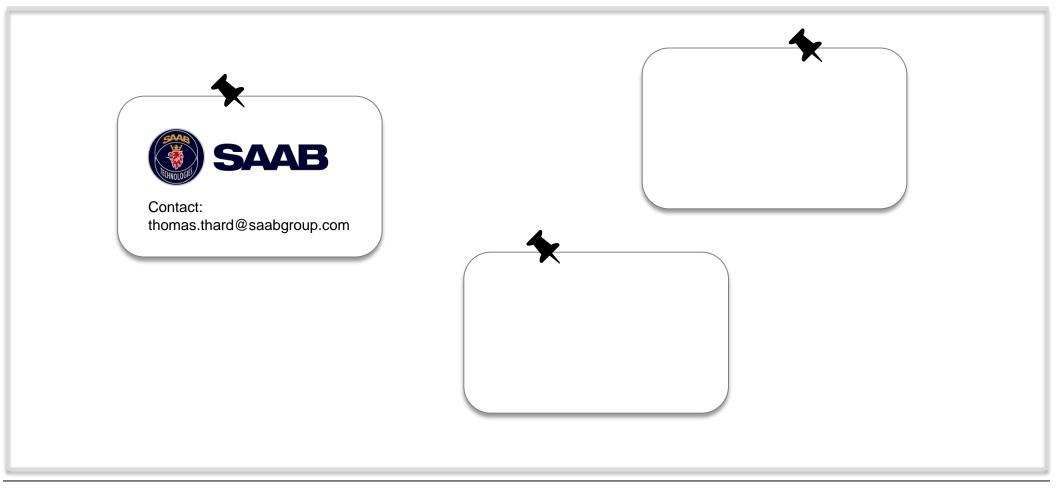
Q: What are the specific functional requirements?

A: To pre-analyze each case after scanning so when the pathologist opens it for review the regions of cancer cells are graphically indicated (automated tumor detection), minimizing the time needed to screen/eye-ball searching for the tumor regions in the slide. A very, very high sensitivity is crucial for the pathologist to safely be able to save time in the negative regions and slides.

Q: What is the volume of data to be analyzed / week? How many slides/patient?

A: Each pathology case for a colorectal surgical specimen typically has 40 to over 100 H&E slides including the lymph nodes.

Contact details:


Procurement: <u>Lennart.Snar@sll.se</u>

Innovation Manager: <u>Tomas.borgegard@sll.se</u>

Pinboard / Anslagstavla:

Industry looking for partners

