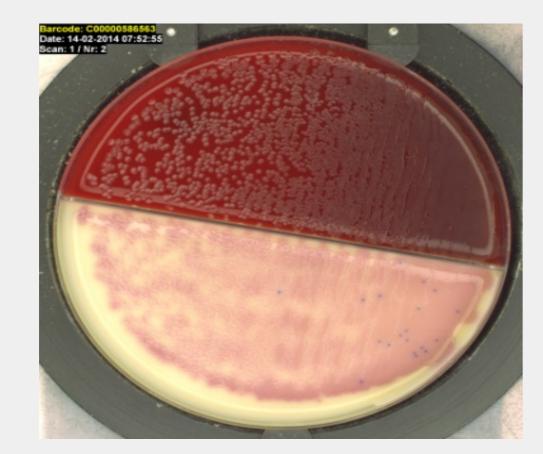
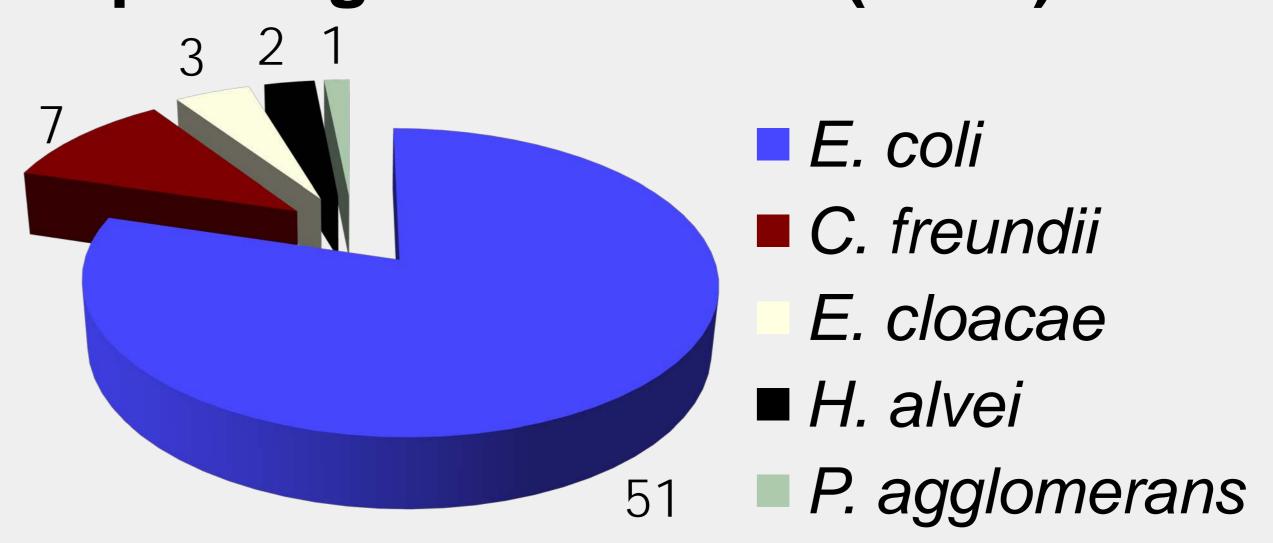
Changing of minimum criteria for species identification of *E. coli* in urinary samples following implementation of BD Kiestra Total Laboratory Automation (TLA) at Karolinska University Laboratory


Authors: Maria Spernaes (Biomedical scientist) and Owe Källman (MD,PhD) Clinical microbiology, Karolinska University Laboratory, Solna, Sweden

Introduction and methods

In 2013 we changed the processing of the microbiology samples in our diagnostic laboratory. All urinary samples were to be inoculated, incubated, read and processed (follow up-work) in a fully automatic laboratory system.

In the urinary diagnostics we traditionally have identified *Escherichia coli* by a combination of pink colonies on chromogenic agar (galactosidase-positive) and a positive indole-spot test. The indole-spot test was previously performed directly from the agar plates at the laboratory benches, which was impractical following the automation.


The hypothesis for the study was that by using a combination of the chromogenic properties and the typical antibiogram of *E. coli*, indole-spot testing no longer would be needed as a routine test for identifying *E. coli* in a standard urine culture.

We perform direct susceptibility testing for the in Sweden most used oral antibiotics on every urine culture sample and the validated growth to use this is >100. 000 CFU/mL.

We knew that other species than *E. coli*, e.g. *Citrobacter freundii* sometimes are galactosidasepositive only and therefore only pink.

During a time period, all consecutive galactosidasepositive and indole-spot negative isolates were investigated, to see if the antibiogram could be used to identify those isolates that needed further testing to verify the species.

Galctosidase-positive, indolespot negative isolates (n=64)

Results

Between 2012-09-28 and 2013-01-24 the total amount of urine samples processed in the laboratory were 25,608. 5705 *E. coli* isolates were found.

64 isolates were galactosidase-positive and indole-spot negative. They were identified by Maldi-Tof or biochemical methods.

51 (79,7%) isolates were identified as E. coli.

The 13 remaining isolates consisted of the following species: 7 *Citrobacter freundii*, 3 *Enterobacter cloacae*, 2 *Hafnia alvei*, 1 *Pantoea agglomeran*s. All these isolates, except one isolate of *C. freundii* had an antibiogram with resistance to cefadroxil and/or nitrofurantoin.

Conclusion

We found in our study that if we have >100.000 CFU/mL of pink colonies on the chromogenic agar combined with an antibiogram showing susceptibility to cefadroxil and nitrofurantoin, there is no need to include indole-spot testing as a criterion for *E. coli*.

Though as a safety measure, we always perform indole-spot test when additional susceptibility tests are done.

