Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line

Nikhil Nitin Kulkarni a, Hörður Ingi Gunnarsson a, Zhiqian Yi a, Steinunn Gudmundsdottir d, Olafur E. Sigurjonsson a, b, c, Birgitta Agerberth e, Gudmundur H. Gudmundsson a, * a Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
b The Blood Bank, Landspitali University Hospital, Reykjavik, Iceland
c Institute of Biomedical and Neural Engineering, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
d Faculty of Medicine, School of Health Sciences, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland
e Department of Laboratory Medicine, Division of Clinical Microbiology Karolinska University Hospital, Karolinska Institutet, Huddinge, Stockholm, Sweden

ARTICLE INFO

Article history:
Received 30 June 2015
Accepted 1 September 2015
Available online xxx

Keywords:
Antimicrobial polypeptides
CAMP gene
LL-37
Glucocorticoid Receptor
Anti-inflammatory

ABSTRACT

Glucocorticoids (GCs) have been extensively used as the mainstream treatment for chronic inflammatory disorders. The persistent use of steroids in the past decades and the association with secondary infections warrants for detailed investigation into their effects on the innate immune system and the therapeutic outcome. In this study, we analyse the effect of GCs on antimicrobial polypeptide (AMP) expression. We hypothesize that GC related side effects, including secondary infections are a result of compromised innate immune responses. Here, we show that treatment with dexamethasone (Dex) inhibits basal mRNA expression of the following AMPs; human cathelicidin, human beta defensin 1, lysozyme and secretory leukocyte peptidase 1 in the THP-1 monocytic cell-line (THP-1 monocytes). Furthermore, pre-treatment with Dex inhibits vitamin D3 induced cathelicidin expression in THP-1 monocytes, primary monocytes and in the human bronchial epithelial cell line BCl NS 1.1. We also demonstrate that treatment with the glucocorticoid receptor (GR) inhibitor RU486 counteracts Dex mediated down-regulation of basal and vitamin D3 induced cathelicidin expression in THP-1 monocytes. Moreover, we confirmed the anti-inflammatory effect of Dex. Pre-treatment with Dex inhibits dsRNA mimic poly IC induction of the inflammatory chemokine IP10 (CXCL10) and cytokine IL1B mRNA expression in THP-1 monocytes. These results suggest that GCs inhibit innate immune responses, in addition to exerting beneficial anti-inflammatory effects.

© 2015 Elsevier GmbH. All rights reserved.

1. Introduction

Glucocorticoids or corticosteroids (GCs) are currently the most preferred mainstream treatment of inflammatory disorders including asthma, chronic obstructive pulmonary disease and cystic fibrosis (Barnes, 2011). GCs act via binding to the glucocorticoid receptor (GR), leading to receptor dimerization (GR-GR). This ligand-homo-dimer complex (GC-GR-GR) binds to glucocorticoid response elements (GRE) in the promoter regions of GC responsive genes with subsequent activation or repression of target genes (Barnes, 2011). GCs inhibit airway inflammation via suppression of genes encoding pro-inflammatory cytokines together with up-regulation of anti-inflammatory cytokines (Barnes, 2011). GC treatment has been associated with secondary infections such as oral candidiasis and long term side effects include osteoporosis, diabetes, cataracts and pneumonia (Barnes, 2011). Thus, investigations into side effects of GC treatment in general and on health status of patients on long term treatment are warranted. We hypothesize that these secondary infections may be associated with negative effects on the innate immune system.

The innate immune system comprises early immediate defense against invading pathogens. Monocytes, macrophages, neutrophils and epithelial cells constitute an important part of the innate
immune system, providing early defense by secretion of multiple antimicrobial and inflammatory polypeptides. Antimicrobial polypeptides (AMPs) include cationic antimicrobial peptides such as cathelicidins and defensins and larger polypeptides such as lactoferrin, lysozyme and secretory leukocyte peptidase inhibitor (SLPI) (Laube et al. 2006). LL-37 is the main cathelicidin in humans, encoded by the CAMP gene. LL-37 is stored as a pro-form (pro-LL-37) in cells and is activated upon secretion to the mature form LL-37 by specific proteases. In neutrophils the processing enzymes has been shown to be proteinase 3 (Sørensen et al., 2001). LL-37 has direct antimicrobial activity against multiple pathogens and has been demonstrated to exhibit both anti-inflammatory and pro-inflammatory activities, wound healing and angiogenic properties (Cederlund et al., 2011). Pathogen colonization and invasion have been associated with decreased CAMP gene expression. The physiological relevance of cathelicidin is underlined by the fact that the cathelicidin deficient mice (cnp1−/−) are susceptible to infections (Nizet et al., 2001). The active form of vitamin D3 (1α, 25-dihydroxy vitamin D3 (1,25D3)) is a direct inducer of CAMP gene expression via the binding and activation of the vitamin D receptor (VDR). VDR binding leads to formation of VDR-RXR (retinoid X receptor) heterodimer. This complex activates target genes including the CAMP gene by binding to vitamin D response elements (VDRDs) within the gene promoter (Wang et al., 2004). Recent reports have shown positive effects of co-treatment of vitamin D3 and GCs as compared to treatment with GCs alone. Co-treatment with vitamin D3 and GCs was shown to reverse the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients with a positive outcome on the anti-inflammatory treatment (Nystrakis et al., 2006).

In this study, we have analysed the effect of GCs on AMP expression and the effect of co-treatment with vitamin D3. We demonstrate that treatment with Dexamethasone (Dex) down-regulates gene expression of the following AMPs: cathelicidin, human beta defensin 1, lysozyme, lactoferrin and SLPI in the human monocytic cell line THP-1. Furthermore, we show that pre-treatment with Dex suppresses vitamin D3 enhanced cathelicidin expression in both THP-1 and primary monocytes. Dex mediated suppression of CAMP gene expression is counteracted by pre-treatment with the GR inhibitor RU486 in THP-1 monocytes. Pre-treatment with RU486 also reverses Dex mediated inhibition of vitamin D3 enhanced cathelicidin expression. Similarly, we observed that Dex treatment inhibited basal and vitamin D3 induced CAMP gene expression in the human bronchial epithelial cell line BCl NS 1.1. Finally, we have confirmed the anti-inflammatory effects of Dex in THP-1 monocytes. Pre-treatment with Dex inhibits poly I/C induction of genes encoding inflammatory cytokines. In conclusion, we show that treatment with GCs have negative effects on AMP expression in vitro, which may have possible therapeutic implications in patients on GC therapy.

2. Materials and methods

2.1. Cell culture and reagents

The THP-1 cell line (THP-1 monocytes) is a human monocytic leukemia cell line commonly used as a model to study monocyte-macrophage differentiation (Auwerx, 1991). This cell line is available from ATCC (Cat. No. TIB-202) and was a kind gift from Dr. Petur Henry Petersen, University of Iceland. The cells were cultured in complete RPMI 1640 medium (Gibco, Cat. No. 52400) supplemented with 10% Fetal Bovine Serum (Gibco, Cat. No. 10270-106), 0.05 mM 2-mercaptoethanol (Sigma–Aldrich, USA, Cat. No. M7522) with 20U/ml penicillin and 20 μg/ml streptomycin as antibiotics (Gibco, Cat. No. 15140-122). For monocyte to macrophage differentiation THP-1 monocytes (1 × 10⁶) were treated with 50 ng/ml phorbol myristate acetate (PMA) (Sigma, Cat. No. P8139) for 24 h. After 24 h treatment the cells were washed thrice with 1x phosphate buffered saline (PBS); Adherent cells were then rest and cultured in PMA free media for 24 h followed by different treatments. Primary monocytes were isolated by adherence method as described previously (Elkord et al., 2005). Blood was isolated from donors with informed consent and approval of the internal ethical committee at Blood Bank, University of Iceland. Briefly, 10 mluffy coat and 30 ml 1x PBS were mixed in a 50 ml centrifuge tube. This diluted buffy coat was overlaid on 10 ml ficollopae (Cat. No. 17-1440-02, Sigma–Aldrich, USA). After 20 min centrifugation at 2000 rpm, the middle mononuclear cell layer was collected and washed twice with 1x PBS at 1200 rpm for 10 minutes. The resulting live mononuclear cells were counted with trypan blue dye (Sigma–Aldrich, USA, Cat. No.T8154) exclusion assay (more than 95% live cells were recovered). A total of 10 × 10⁶ isolated mononuclear cells were then seeded in each well in a 6 well cell culture plate. After that the cells were incubated at 37°C, 5% CO₂ for 2–3 h and washed three times with 1x PBS. The adherent monocytec cells were then rested in complete RPMI 1640 medium for another 3 h before desired treatments. The purity of adherent primary monocytes was analysed with with anti-CD14 antibody (BD Pharmingen, La Jolla, California, USA, Cat. No. 555398) on FACS Calibur flow cytometer, equipped with a 488 nm argon laser and standard band pass filters, and Cell Quest Pro software version 6.0 (Becton Dickinson, La Jolla, California, USA) and was more than 80% pure. BCl. NS 1.1 is a human bronchial epithelial cell line was a kind gift from Dr. Matthew S Walters, Weill Cornell Medical College, New York NY, USA (Walters et al., 2013) and was established by immortalization with retrovirus expressing human telomerase (hTERT). The BCl. NS 1.1 cells were cultured in Bronchial/Tracheal Epithelial Growth medium (Cell Applications, USA, Cat. No. 511A-RA) supplemented with antibiotics as described above. 2 × 10⁵ cells were seeded in each well in a 6 well cell culture plate and grown to 70–80% confluence before desired treatments. The active form of vitamin D3 1α, 25-Dihydroxy vitamin D3 (1,25D3) (Cat. No. 2551), Dexamethasone (Dex) (Cat. No.1126), Fluticasone Propionate (FP) (Cat. No. 2007), Budesonide (BD) (Cat. No. 2671) and glucocorticoid receptor inhibitor Milpeepristone (RU 486) (Cat. No. 1479) were all purchased from Tocris (R and D Biosystems, USA). The inactive form of vitamin D3 25-Dihydroxy vitamin D3 (25D3) was purchased form Sigma–Aldrich, USA (Cat. No. C9756). The GCs were reconstituted in Dimethyl sulfoxide (DMSO) and vitamin D3 (1,25D3 and 25D3) in 100% ethanol according to manufactures instructions. The final concentration of solvents was kept at 0.1% v/v or less and had no significant effects on expression of genes of interest. Appropriate solvent controls were included in all the experiments.

2.2. RNA isolation and quantitative real time PCR

Total RNA was isolated with Nucleospin RNA kit (Macherey-Nagel, Germany, Cat. No. 740955) and quantified on a spectrophotometer (Nanodrop, Thermo Scientific, USA). Isolated RNA was reverse transcribed into first strand cDNA according to manufacturer’s instructions (High capacity cDNA reverse transcription kit, Life Technologies, USA, Cat. No. 4368814). The cDNA was quantified with Power SYBR green Universal PCR master mix (Applied Biosystems, USA, Cat. No. 4367659) on a 7500 Real time PCR machine (Applied Biosystems, USA). Ubiquitin (UBC) and Hypoxanthis phosphoribosyltransferase 1 (HPRT1) were utilized as reference genes in all the quantitative real time PCR (q-RT PCR) experiments. An arithmetic average of the Ct values of both reference genes were used. A non-template control was included in all the experiments. Primers for human beta
Table 1

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>RefSeq ID</th>
<th>Forward Primer (5'→3')</th>
<th>Reverse Primer (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMP</td>
<td>NM_004345</td>
<td>GCACACTGGTCTTCCTACGT</td>
<td>CTACACCTACGCCCTCCT</td>
</tr>
<tr>
<td>MKP-1</td>
<td>NM_006417</td>
<td>CTCCTCCTCCAGACTGTGCTGA</td>
<td>CAGATACAGAGATCCCTGCT</td>
</tr>
<tr>
<td>IP-10 (CXCL10)</td>
<td>NM_001565</td>
<td>CAAGCTGAGGCTAGGTACCTCT</td>
<td>GACATATGCTCAGCCAGCA</td>
</tr>
<tr>
<td>IL1B</td>
<td>NM_000576</td>
<td>GAACACCTACCTCATTGCC</td>
<td>CAGCCAATCCCTATGGTCAG</td>
</tr>
<tr>
<td>UBC</td>
<td>NM_021009</td>
<td>CTTTACCTGAGCTCTTCCCT</td>
<td>GATTTGGGTCGCAGTTCTTG</td>
</tr>
<tr>
<td>HPRT1</td>
<td>NM_000194</td>
<td>GCAGTCTGAAATAGGCTCAG</td>
<td>TCTTGTTGAGATGGCCTCTGA</td>
</tr>
<tr>
<td>LYZ</td>
<td>NM_008239</td>
<td>CTCAGAATGCTGCAGAGA</td>
<td>AGTATAGTACCTGAGCTCTAG</td>
</tr>
<tr>
<td>LTP</td>
<td>NM_001199149</td>
<td>AATAGTGTTCGTGGCTGTC</td>
<td>TGTATCCAGGCCATCTTG</td>
</tr>
<tr>
<td>SLPI</td>
<td>NM_003064</td>
<td>CATAGTACCTGGCCACCTCC</td>
<td>CATACAAGAAGACTGACTGCA</td>
</tr>
</tbody>
</table>

Defensin 1 (DEFB1, RefSeq ID: NM_5.281) were designed with Perl Primer (Marshall, 2004) (forward 5'→CATGCTGCAGTTCACCTGCTC-3' and reverse 5'→ATGAGAAGATTACACTGGAGG-3').

3. Results

3.1. Dexamethasone treatment down-regulates vitamin D3-induced human cathelicidin expression in THP-1 monocytes

First, we analyzed the effect of dexamethasone (Dex) treatment on CAMP gene expression encoding the human cathelicidin LL-37 in THP-1 monocytes (Fig 1A). THP-1 monocytes were treated with 10 μM Dex at different time points (3–48 h). We analyzed the mRNA expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) and the CAMP gene with qRT PCR. MKP-1 is known to be activated on Dex treatment and was used as a positive control (Zhang et al., 2013a). The expression of MKP-1 was detected at 3 h and continued to increase up to 48 h. Dex treatment inhibited basal CAMP gene expression at 3 h (0.24 fold, p = 0.0457), 6 h (0.37 fold, p < 0.0001), 24 h (0.45 fold, p < 0.0001) and 48 h (0.61 fold, p < 0.0001) post-treatment. We further analyzed the effect of Dex treatment on mRNA level of several other antimicrobial polypeptides (AMPs) such as human beta defensin 1 (DEFB1), lysozyme (LYZ), secretory leukocyte protease inhibitor 1 (SLPI) and lactoferrin (LTF). Treatment with 10 μM Dex for 48 h down-regulated DEFB1 (0.49 fold, p < 0.0001), LYZ (0.69 fold, p = 0.0005) and SLPI (0.21 fold, p = 0.0011) gene expression (Fig 1B).

Next, we investigated the effect of the glucocorticoids Dex, Fluticasone Propionate (FP) and Budesonide (BD) on vitamin D3 (1,25D3) induced cathelicidin expression (Fig 1C). THP-1 monocytes were pre-treated with either 100 nM Dex, 10 μM Dex, 100 nM FP or 100 nM BD for 24 h, followed by treatment with 1,25D3 for another 24 h. After 1,25D3 treatment, cells were processed for Western blot analysis. The blot was probed for antibodies against the human cathelicidin LL-37 and vitamin D receptor (VDR). Glyceroldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading control. Pre-treatment with Dex suppressed 1,25D3 enhanced pro-LL-37 expression and the reduction was more pronounced in cells treated with 10 μM Dex as compared to 100 nM Dex (Fig 1C). Similarly, pre-treatment with both FP and BD also inhibited 1,25D3 induced pro-LL-37 protein expression (Fig 1C). The active form of...
Fig. 1. Dexamethasone down-regulates basal and vitamin D3 induced human cathelicidin expression in THP-1 monocytes. THP-1 monocytes were treated with 10 μM Dex at different time points (3 h–48 h). DMSO was used as a solvent control (A). The cells were then harvested and relative gene expression of the human cathelicidin CAMP and MAP kinase Phosphatase-1 (MKP-1) was assessed with q-RT PCR (n = 3). In B similarly THP-1 monocytes were treated with 10 μM Dexamethasone (Dex) for 48 h and screened for effects on gene expression of human beta defensin 1 (DEFB1), lysozyme (LZY), secretory leukocyte peptidase inhibitor-1 (SLPI) and lactoferrin (LTF) with q-RT PCR. Poly Ubiquitin C (UBC) and hypoxanthine-guanine phosphoribosyltransferase -1 (HPRT1) were used as reference genes (n = 3). In C, THP-1 monocytes were pre-treated with either 100 nM Dex, 10 μM Dex, 100 nM Fluticasone Propionate (FP) or 100 nM Budesonide (BD) for 24 h, followed by treatment with 1 nM 1,25D3 for another 24 h. Protein expression of the human cathelicidin (Pro-LL-37) and vitamin D receptor (VDR) was analysed with Western blot analysis. GAPDH was used as a loading control. (L = Molecular weight ladder; ns indicates non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, ****, p < 0.0001)

vitamin D3 (1,25D3) up-regulates LL-37 expression via activation of VDR (Gombart et al., 2005). Pre-treatment with Dex did not affect 1,25D3 mediated increase in VDR protein expression. FP and BD pre-treatment enhanced 1,25D3 mediated increase in VDR expression (Fig 1C). Similar effects were observed in PMA differentiated THP-1 macrophages (Fig S1). In contrast to above results Dex treatment enhanced basal CAMP gene expression in THP-1 macrophages (Fig S1).

3.2. Treatment with glucocorticoid receptor inhibitor RU486 counteracts Dexamethasone mediated decrease in human cathelicidin expression

Next, we analysed the role of Glucocorticoid Receptor (GR) in Dex mediated decrease in cathelicidin expression in THP-1 monocytes. THP-1 monocytes were pre-treated with 10 μM of the GR inhibitor RU 486 for 3 h, followed by treatment with 10 μM Dex for 48 h and the mRNA level of CAMP transcript was analysed with q-RT PCR. As shown in Fig. 2A, Dex treatment reduced basal CAMP gene expression by 0.60 fold (p < 0.001). Pre-treatment with RU486 prevented Dex mediated decrease in CAMP mRNA level (p = 0.0010). Further, THP-1 monocytes were pre-treated with 10 μM RU 486 for 3 h, followed by treatment with 10 μM Dex for 24 h. The cells were further treated with 1 nM 1, 25D3 for 24 h and pro-LL37 expression was analysed with Western blot (Fig. 2B). Pre-treatment with RU486 counteracted Dex mediated decrease in 1,25D3 induced cathelicidin (pro-LL-37) protein expression (Fig. 2B). We also confirmed Dex mediated decrease in CAMP gene expression in primary monocytes isolated from fresh buffy coats of two healthy human volunteers (Donor1 and Donor 2, Fig 2C). Primary monocytes were pre-treated with 10 μM Dex for 24 h, followed by treatment with 10 nM 1,25D3 for another 24 h and CAMP mRNA expression was analysed with q-RT PCR. As shown in Fig. 2C, Dex treatment reduced basal CAMP mRNA levels in both Donor 1 (0.62 fold) and Donor 2.
Dex also reduced 1.25D3 mediated increase in CAMP gene expression in both the donors 1 and 2 (12.83 fold and 83.91 fold, respectively) (Fig. 2C).

3.2. Dexamethasone down-regulates poly IC induced genes encoding pro-inflammatory cytokines in THP-1 monocytes

THP-1 monocytes were pre-treated with 10 μM Dex for 24 h, followed by treatment with 1 nM 1.25D3 and/or 10 μg/ml poly IC for 6 h. The mRNA level of CAMP, the inflammatory chemokine interferon gamma induced protein 10 (IP10/ CXCL10) and the inflammatory cytokine interleukin beta 1 (IL1B) was analysed with q-RT PCR (Fig. 3 A–C). Poly IC treatment significantly inhibited 1.25D3 induced CAMP expression ($p=0.0426$) (Fig. 3A). This reduction was further enhanced by Dex ($p=0.0033$) (Fig. 3A). Pre-treatment with Dex inhibited poly IC increased mRNA level encoding IP10 ($p=0.0016$) (Fig. 3B). Treatment with 1.25D3 enhanced mRNA level of the genes encoding the inflammatory cytokines IP10 (CXCL10) ($p=0.0240$) (Fig. 3B) and IL1B ($p=0.0298$) (Fig. 3C) in cells treated with poly IC. This enhanced expression of mRNA encoding IP10 (CXCL10) and IL1B was inhibited on pretreatment with Dex ($p=0.0235$ and $p=0.0093$, respectively) (Fig. 3B and C). Dex mediated inhibition of poly IC induced IL1B expression was confirmed with Western blot (Fig. 3D). THP-1 monocytes were pre-treated with 10 μM Dex for 24 h, followed by treatment with 1 nM 1.25D3 and/or 10 μg/ml poly IC for 18 h. Protein expression...
of pro-LL-37 and IL1B was analysed by Western blot. Interestingly both poly IC and Dex treatment reduced 1,25D3 mediated increase in pro-LL37 expression (Fig. 3D). Further, we show both Dex and 1,25D3 treatment inhibited poly IC mediated increase in IL1B protein expression (Fig. 3D).

3.3. Dexamethasone treatment down-regulates vitamin D3 induced human cathelicidin expression in the human bronchial epithelial cell line BCI NS1.1

Finally, we investigated whether Dex treatment also has similar effects on CAMP gene expression in other cell types. BCI NS 1.1 is a basal human bronchial epithelial cell line established by immortalization with hTERT (Walters et al., 2013). BCI NS1.1 cells were grown to 70–80% confluency. The cells were then pre-treated with either 100 nM Dex or 10 μM Dex for 24 h, followed by treatment with 20 nM 1,25D3 for 24 h. mRNA level of CAMP transcript was analysed with q-RT PCR. Pre-treatment with 100 nM Dex and 10 μM Dex reduced basal expression of CAMP gene by 0.34 fold (p = 0.001) and 0.63 fold (p < 0.001), respectively (Fig. 4A). Further, pre-treatment with 100 nM Dex and 10 μM Dex reduced 1,25D3 induced CAMP gene expression by 1.14 fold (p = 0.0012) and 1.72 (p < 0.001) fold, respectively. We confirmed this inhibition at protein level with Western blot (Fig. 4B). The cells were pre-treated with either 100 nM Dex or 10 μM Dex, followed by treatment with either 20 nM 1,25D3 (active form of vitamin D3) or 20 nM 25D3 (inactive pro-form of vitamin D3) for 24 h. Expression of pro-LL37 was analysed with Western blot. GAPDH was used as a loading control.
control. Pre-treatment with Dex reduced both 1,25D3 and 25D3 increased pro-LL-37 protein expression (Fig. 4B).

4. Discussion

In this study, we demonstrate that glucocorticoids (GCs) suppress innate immunity in vitro by down-regulation of genes encoding antimicrobial peptides. Dexamethasone treatment down-regulated the basal mRNA expression of the antimicrobial peptides human cathelicidin (LL-37) and human beta defensin 1 in addition to the antimicrobial polypeptides lysozyme and secretory leukocyte peptidase inhibitor-1 in THP-1 monocytes (Fig. 1). GCs are the most effective treatment for chronic inflammatory disorders, however, the consistent use of these steroids in the past decades with associated side effects including secondary infections has made it imperative to study the long term effects of treated patients. In general, GCs have been shown to spare innate immunity, while down-regulating inflammatory responses (Scheleimer, 2004). However, recent reports suggest that GC treatment can modulate innate immunity by differentially affecting antimicrobial peptide expression. Budesonide was shown to suppress mCRAMP (mouse cathelicidin) expression, leading to impaired anti-bacterial clearance in an allergic asthma mouse model (Wang et al., 2013). Treatment with the GC fluticasone propionate either enhanced or inhibited the expression of antimicrobial proteins in human primary bronchial epithelial cells and in the BEAS-2B human bronchial epithelial cell line. These effects were mediated via activation of C/EBPβ transcription factor (Zhang et al., 2007). Further, tracheal antimicrobial peptide (TAP), a bovine defensin, expression was shown to be down-regulated in bronchial biopsies from dexamethasone treated calves (Mitchell et al., 2007).

Most patients with asthma respond to standard therapy with GCs, however about 15% patients fail to respond to treatment due to steroids insensitivity (Kerley et al., 2015). Vitamin D3 insufficiency has been associated with poor outcome in patients on GC therapy with impaired lung function, increased airway hyper responsiveness and reduced GC response (Sutherland et al., 2010). Interestingly, an inverse correlation was noted in asthmatic children between 25D3 levels and use of anti-inflammatory medication including GCs (Searing et al., 2010). Furthermore, it was also shown that treatment with vitamin D3 enhanced the GC action in PBMCs from asthmatic patients and anti-inflammatory functions of Dex in vitro (Searing et al., 2010; Zhang et al., 2013b). In this study, we analyzed the possible effects of GC pre-treatment on vitamin D3 induced cathelicidin expression. The active form of the seco- steroid hormone vitamin D3 (1,25D3) induces human cathelicidin expression via VDR binding with subsequent formation of VDR-RXR heterodimer, leading to active CAMP gene transcription (Liu et al., 2007). Pre-treatment with Dex, fluticasone propionate and budesonide inhibited 1,25D3 induced cathelicidin expression in THP-1 monocytes (Fig. 1). Interestingly, basal CAMP mRNA transcription was enhanced in PMA differentiated THP-1 macrophages (Fig. S1). However, pre-treatment with Dex led to down-regulation of 1,25D3 induced CAMP gene expression in THP-1 macrophages (Fig. S1) in agreement with the results in THP-1 monocytes. Similarly, the basal expression of human beta defensin 1 and lysozyme was reduced in Dex treated THP-1 macrophages (Fig. S1). In primary monocytes isolated fromuffy coats, Dex treatment reduced basal and 1,25D3 induced CAMP gene expression also in agreement with the results in THP-1 monocytes (Fig. 2). To our knowledge this is the first report, demonstrating GC mediated down-regulation of human cathelicidin expression. GC act via binding to the glucocorticoid receptor (GR), leading to trans-activation of genes encoding anti-inflammatory cytokines such as IL-10 and trans-repression of pro-inflammatory cytokines and chemokines (Barnes, 2011).

We show that pre-treatment with the GR inhibitor RU486 counteracted...
the Dex mediated inhibition of 1,25D3 enhanced pro-LL-37 expression (Fig. 2). The down-stream pathways leading to GR mediated inhibition of CAMP gene expression will need further investigation.

The most likely explanation for this effect would be GR mediated p38 mitogen activated protein kinase (MAPK) inhibition (Barnes, 2011). The p38 and JNK pathways have been shown to cooperatively trans-activate VDR via c-Jun/AP-1 in breast cancer cells (Qi et al., 2002). We further demonstrate that Dex treatment also down-regulated basal and vitamin D3 induced human cathelicidin expression in a human bronchial epithelial cell line BCI NS 1.1 (Fig. 4).

Finally, we confirmed the anti-inflammatory effects of Dex in THP-1 monocytes (Fig. 3). The double stranded RNA mimic poly IC is a Toll like Receptor 3 ligand known to induce inflammatory responses similar to viral infections (Marshall-Clarke et al., 2007). Viral infections in asthma patients are a frequent cause of exacerbations (Rosenthal et al., 2010). Dex pre-treatment inhibited dsRNA mimic the poly IC induced inflammatory chemokine IP10 gene expression (Fig. 3). Interestingly, treatment with 1,25D3 enhanced poly IC induced mRNA encoding IP10 (CXCL10) and IL1B gene expression was inhibited upon Dex pre-treatment (Fig. 3). In conclusion, we demonstrate that treatment with GC dexamethasone down-regulated human cathelicidin expression via the GR receptor. Thus, vitamin D3 treatment might act as a promising co-therapeutic intervention in patients on GC therapy, reversing GC mediated suppression of AMPs and promoting innate immunity. This treatment would have possible clinical therapeutic implications for GC treatment of asthma patients and additional inflammatory disorders.

Conflict of interest

The authors declare no conflict of interests.

Acknowledgements

This work was supported by a grant to Gudmundur Hrafn Gudmundsson from Icelandic Centre for Research (RANNIS) (Project Number-130202-052) and the University of Iceland Research Fund. Nikhil N. Kulkarni was supported by University of Iceland Research fund for PhD students. This work was supported by grants from the Swedish Foundation for Strategic Research (SSF, Grant No. RB08-0014), the Swedish Heart-Lung Foundation (Grant No. 2013-0366), the Swedish Research Council (Grant No. K2014-67X-11217-20-3), the Gudmundur Hrafn Gudmundsson was supported by a Wenner-Gren Foundation as a visiting scientist at Karolinska Institutet.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.imbio.2015.09.001.

References

Please cite this article in press as: Kulkarni, N.N., et al., Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line. Immunobiology (2015), http://dx.doi.org/10.1016/j.imbio.2015.09.001.