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Background The INTERCEPT Blood System for Platelets (PLT) utilizes amotosalen
(S-59) in combination with ultraviolet A (UVA) light to inactivate viruses, bacte-
ria, protozoa and leucocytes that may contaminate PLT concentrates. However,
limited data are available on the quality of INTERCEPT-treated double-dose (DD)
buffy-coat (BC) PLT units allowing a single treatment procedure to produce two
pathogen-inactivated PLT units for transfusion.

Study Design and Methods The objective of this study was to evaluate potential
in vitro effects of the INTERCEPT treatment on pools of 7 BCs as compared to
untreated units. Functional, phenotypic and mitochondrial properties of DD BC
PLTs during storage over 7 days were studied.

Results For some parameters measured, small yet significant differences were
observed including PLT count (P < 0�05), pH, pCO2 and glucose concentration.
Throughout storage, no significant differences were observed in ATP levels, ESC,
HSR reactivity and CD62P expression. Similarly, no differences were observed in
the expression of PAC-1, CD42b and PECAM-1 at any time-points. The mito-
chondrial membrane potential (MMP) determined by JC-1-labelling was well
maintained until day 7 in all treated and untreated units (>90%). The release of
sCD40L increased over time (P < 0�01) in all units but without any significant
differences between treated and untreated PLTs.

Conclusion Our data demonstrate that photochemical pathogen inactivation of
DD-BC PLT concentrates with the INTERCEPT Blood System had no influence on
the PLT in vitro quality over the 7 day of storage. However, whether in vivo effi-
cacy of INTERCEPT-treated PLTs is affected may require clinical evaluation.
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Introduction

Transfusion of labile blood components can be lifesaving

but also comes with potential risks. Significant progress

has been made to reduce the risk of transfusion-transmit-

ted infections (TTI), and this risk is lower than ever due

to the improvements in blood collection and refinement

of tests. Still these achievements are not enough. There-

fore, the transfusion medicine community is currently

embracing further efforts leading to a more proactive

approach to blood safety, namely pathogen inactivation

(PI), to satisfy the need for safer blood products.

One such system, the INTERCEPT Blood System was

developed to enhance transfusion safety by inactivating a

broad spectrum of viruses, bacteria, protozoa, and white

blood cells (WBCs) in platelet (PLT) units and in plasma

[1, 2]. PI is accomplished by covalent modification of

nucleic acids using photo-activation of amotosalen by

ultraviolet A (UVA) light which prevents pathogens and

leucocytes from replicating and functioning [3]. Thus,

amotosalen ensures a high specificity for nucleic acid
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modification and a minimal impact to the efficacy of the

treated blood products.

The various PI technologies and their effect on blood

components differ significantly [4]. The current tech-

nologies apply light of different wavelengths with or

without [5, 6] chemical compounds to target the gen-

ome of pathogens and leucocytes. The mechanism of

action and specificity of a PI technology determine its

impact on the blood component and affect the clinical

safety and efficacy of treated products. Overall, it is

important to limit the use of high-energy wavelengths

[7] that can lead to the generation of reactive oxygen

species (ROS) which are directly damaging to the PLTs

[8, 9].

Several in vitro studies have subsequently assessed the

quality of INTERCEPT-treated PLTs stored for up to

7 days after treatment [10, 11]. These results seem to be

in line with in vivo results of INTERCEPT-treated PLTs

obtained from clinical trials [12–14].

However, limited data are available on the quality of

INTERCEPT-treated double-dose (DD) buffy-coat (BC)

PLTs, allowing a single treatment procedure to produce

two pathogen-inactivated PLT units for transfusion. Thus,

conflicting data describing the effects on mitochondrial

function after INTERCEPT treatment [15, 16] illustrates

the need for further investigations.

Here, we report the potential in vitro effects of the

INTERCEPT treatment on the functional, phenotypic and

mitochondrial properties of DD-BC PLTs suspended in

SSP+ as compared to untreated PLTs. All in vitro parame-

ters were monitored over a 7-day storage period.

Materials and methods

Preparation and storage of platelet units

Whole blood (WB) units with a volume of 450 – 45 ml

were collected and stored for at least 2 h on butanediol

cooling plates to reduce the temperature to approximately

20°C before further processing. Buffy coats were sepa-

rated on the day of collection by a hard-spin centrifuga-

tion (speed 2700 g for 10 min) and separation by

Macopress Smart (MacoPharma, Mouvaux, France) fol-

lowing the blood bank standard operating procedures.

After overnight storage (Fig. 1), seven ABO-matched

buffy coats were selected from donors with an average

PLT donor count of ≥240 9 109/l. Seven ABO-identical

BCs were then pooled with 280 ml of SSP+ resulting in

65% SSP+ and 35% plasma (SSMASSP212U) using a Fen-

wal (code K4R7039) pooling set to create an ABO-identi-

cal DD primary pool. Two DD PLT units were then pooled

and split to generate paired DD PLT units, with one DD

PLT unit treated with the INTERCEPT System, whilst the

other remained untreated (Fig. 1). Each DD PLT unit met

the INTERCEPT processing requirements to undergo

INTERCEPT dual treatment (Table 1).

Treatment of platelet units with the INTERCEPT
Blood System

Eight DD PLT units were designated to PI treatment with

the INTERCEPT Blood System (Cerus Europe BV, Amer-

sfoort, the Netherlands), whilst eight other identical DD

Fig. 1 Schematic overview of buffy-coat

pooling.
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PLT units remained untreated to serve as controls. The

INTERCEPT-treated components were exposed to 3 J/cm2

UVA light in the presence of 150 lM amotosalen. Follow-

ing illumination, the treated units were transferred by

gravity flow into the CAD (Compound Adsorption Device)

container in the integrated disposable set and incubated

for 16 h on a flatbed agitator in a temperature-controlled

incubator at 22 – 2°C (model PC900i, Helmer, Noblesville,

IN, USA). All DD PLT units (treated and untreated) were

then split into two equal single-dose units and transferred

to the associated PL2410 plastic container (Cerus Europe

BV, Amersfoort, the Netherlands) and stored for 7 days at

22°C with agitation (PC900i, Helmer). Platelet samples

(10 ml) were removed on days 2 (immediately following

transfer from the CAD), 5 and 7 by sterile-docking a sam-

ple pouch (Fenwal Inc., Lake Zurich, IL, USA) and used to

assess in vitro quality.

Analysis of cellular and metabolic, in vitroin vitro
markers

Cellular in vitro parameters including recovery post-treat-

ment of PLT counts (109/l and 109/unit) and mean PLT

volume (MPV) using CA 620 Cellguard (Boule Medical,

Stockholm, Sweden) were measured. The volume (ml) was

calculated by weighing the contents of the storage bag, in

grams, on a scale (Mettler PB 2000, Mettler-Toledo, Albs-

tadt, Switzerland), and the result, in grams, was divided

by 1�01 (1�01 g/ml is the density of the storage medium

composed of approximately 65% SSP+ and 35% plasma).

The extracellular lactate dehydrogenase (LDH) activity (%

of total), a marker for cell disintegration, was measured

with a spectrophotometric method (Sigma-Aldrich kit

063K6003; St Louis, MO, USA; Spectrophotometer Jen-

way 6500; Staffordshire, UK) [17].

The extracellular metabolic environment was studied

by use of routine blood gas equipment (ABL 800, Radi-

ometer, Copenhagen, Denmark) including pH (37°C), pCO2

and pO2 (kPa at 37°C), glucose (mmol/l) and lactate

(mmol/l). Bicarbonate (mmol/l) was calculated based on

the other measured variables. The pH of all samples was

measured at 37°C. Therefore, Rosenthal’s factor of 0�0147
unit/1°C was used to correct pH to the temperature of

sampling (22°C). This factor gives an approximation to

the change in pH of the sample per degree centigrade

when it is warmed anaerobically from the collecting tem-

perature 22–37°C.
According to Bertolini and Murphy [18], the assessment

of swirling was scored as 0, 1 and 2. The WBC on day 1

was determined with a Nageotte chamber and a micro-

scope (Zeiss, standard, Chester, VA, USA) [19].

Analysis of in vitroin vitro functional, phenotypic and
secretion markers

Hypotonic shock response reactivity (HSR) as well as

the extent of shape change (ESC) measurements was

performed using a dedicated microprocessor-based

instrument (SPA 2000, Chronolog, Havertown, PA,

USA) with the modifications of these tests described by

VandenBroeke et al. [20]. The total adenosine triphos-

phate (ATP) concentration, (lmol/1011 PLTs) was deter-

mined with a Luminometer (Orion Microplate

Luminometer, Berthold Detection Systems GmbH, Pforz-

heim, Germany) on the basis of principles described by

Lundin [21].

Expression of a conformational epitope on the GPIIb/

IIIa complex of activated PLTs was assessed using the

FITC-conjugated monoclonal antibody PAC-1, (IgM,

Beckton Dickinson, San Jose, CA, USA). For this pur-

pose, unfixed PLTs (108/ml) were incubated with 20 ll
ADP at 37°C for 15 min without stirring. The specificity

of the PAC-1 binding was demonstrated by staining in

the presence of RGDS [22]. Flow cytometric analyses

for PAC-1, CD62P (a marker of activation), CD42b (a

marker of adhesive capability) and PECAM-1 (PLT

endothelial cell adhesin molecule 1) were performed

using a FC500 cytometer; (Beckman Coulter, Villepinte,

France). MLP Acquisition and MLP Analysis software

packages (Beckman Coulter) were used for data acquisi-

tion and analysis, respectively. All methods including

staining were performed as described [23, 24]. All

Table 1 In vitro characteristics of platelet components prior to INTERCEPT treatment

DD INTERCEPT set
input requirement

Validation of double-dose
platelet concentrate (n = 9)

Final INTERCEPT of platelet
concentrate (transfusable unit) (n = 8)

Volume (ml) 375–420 405 – 11�3 198 – 10�3
Platelet dose (1011) 2�5–8�0 5�5 – 0�3 2�4 – 0�2
Plasma ratio (%) 32–47% 38 – 1�1 –

RBC contamination (9 106/ml) <4 Yellow, <4 Yellow, <4
CAD (h) 6–16 n/a ~14

CAD, Compound Adsorption Device; DD, double-dose
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sCD40L concentrations were determined with commer-

cial ELISA kits (Quantikine, CD40 Ligand Immunoas-

say DCDL40) in accordance with the manufacturer’s

(R&D Systems Inc., Minneapolis, MN, USA) recommen-

dations. All measurements were performed in duplicate

on the HT3 Microtiter Plate Reader (Anthos Labtec

Instruments GmbH, Salzburg, Austria) at 466 nm, and

the results for the sCD40L concentrations are given in

pg/ml.

Analysis of mitochondrial membrane potential
(MMP)

Potential changes in the MMP, a marker of pro-apoptotic

events and maintenance of oxidative phosphorylation

capacity, were measured using the mitochondrial perme-

ability transition detection kit MitoPT JC-1 (Immuno-

Chemistry Technologies, LCC, Bloomington, MN, USA).

All samples from all groups (1�106 PLTs/ml) were stained

with the MitoPT JC-1 dye reagent at 37°C for 15 min and

analysed using flow cytometry (FC500; Beckman Coulter).

MLP Acquisition and MLP Analysis software packages

(Beckman Coulter) were used for data acquisition and

analysis, respectively. Depolarized mitochondria (positive

control) were prepared by incubating PLTs with 5 lM
CCCP (Carbonylcyanide m-chlorophenylhydrazone) for

30 min at 37°C. This proton gradient uncoupling agent

quickly reduces the electrochemical potential across the

inner mitochondrial membrane, resulting in a rapid intra-

cellular mitochondrial depolarization event. Maintenance

of MMP is expressed as JC-1-positive PLTs as described

earlier [25].

Table 2 Metabolic and cellular analysis of PLTs (n = 8) stored for 7 days in SSP+ platelet additive solution with or without INTERCEPT

Variables

Reference PLT INTERCEPT DD

Day 2 Day 5 Day 7 Day 2 Day 5 Day 7

Platelet count (9 109/l) 1220 – 77 1206 – 59 1205 – 44 1175 – 43 1154 – 52 1143 – 43a

Platelet content (9 109/Unit) 243 – 18 240 – 14 240 – 11 232 – 10 226 – 9a 224 – 9a

MPV (fl) 8�4 – 0�3 8�6 – 0�2 8�7 – 0�2 8�5 – 0�3 8�6 – 0�2 8�8 – 0�2
pH (220) 7�272 – 0�025 7�374 – 0�022 7�342 – 0�025 7�085 – 0�024 b 7�298 – 0�029b 7�247 – 0�046b
Glucose (mmol/l) 6�2 – 0�2 4�4 – 0�3 2�7 – 0�3 5�8 – 0�3a 3�9 – 0�4a 2�2 – 0�6a
Lactate (mmol/l) 9�8 – 0�4 13�0 – 0�4 16�1 – 0�4 10�1 – 0�6 13�1 – 0�5 16�3 – 0�9
pCO2 (kPa at 37°C) 3�44 – 0�22 2�19 – 0�17 1�99 – 0�2 5�31 – 0�2b 2�04 – 0�05 1�76 – 0�1a
pO2 (kPa at 37°C) 25�0 – 6�0 21�5 – 0�7 20�0 – 1�6 20�8 – 0�9 21�6 – 0�7 20�7 – 1�3
Bicarbonate (mmol/l calculated) 6�8 – 0�3 5�5 – 0�5 4�7 – 0�7 6�8 – 0�2 4�3 – 0�3b 3�3 – 0�4b

Values are reported as mean – standard deviation (SD).

DD, double-dose; MPV, mean PLT volume.
aP < 0�05 vs. reference PLT.
bP < 0�01 vs. reference PLT.

Fig. 2 In vitro functional and biochemical

effects on PLTs (n = 8) stored for 7 days in SSP

+ platelet additive solution of control (□) and
PCT (■) PLTs on Day 2, 5 and 7 of storage.The

bars represent the mean percentage – SD of

positive PLTs (n = 8).
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Statistical analyses

The mean values and standard deviations (n = 8) are usu-

ally given unless otherwise indicated. A repeated-mea-

sures ANOVA including post hoc test Bonferroni0s
adjustment was performed. The analyses were carried out

using the STATISCA software, version 9 StatSoft, Inc. 1984–

2007 (SPSS, Chicago, IL, USA).

Results

In vitro quality parameters were measured on day 2 (fol-

lowing INTERCEPT treatment) and on day 5 and 7 of

storage.

Effects on cellular, metabolic functional,
phenotypic and secretion markers

During storage, there was a small yet significant differ-

ence in PLT counts (P < 0�05 on day 7) and contents

(P < 0�05 on day 5 and day 7), this may be due to the

manipulations involving CAD; meanwhile, no differences

were observed in MPV between the two groups (Table 2).

All PLTs maintained a pH at 22°C above 6�4; however,

following treatment, the INTERCEPT PLTs had a consis-

tently lower pH (P < 0�01 (Table 2) than untreated units,

but values were above a pH of 7).

We found that the glucose concentration (P < 0�05
from Day 2) was higher in the untreated units as

compared to the INTERCEPT-treated units (Table 2).

However, the glucose consumption rate was equally

consistent (0�05 – 0�0 mmol/day/1011 PLTs) in the

untreated units vs. (0�05 – 0�0) in the treated units, as

was the lactate production rate (0�09 – 0�01 mmol/day/

1011 PLTs) in the untreated units vs. (0�09 – 0�01) in

the treated units.

In addition, carbon dioxide (P < 0�01 on day 2 and

P < 0�05 on day 7) and the calculated bicarbonate con-

centration (P < 0�01 on day 2, 5 and 7) decreased more

rapidly over time in the INTERCEPT units (Table 2). The

ATP levels remained stable in all units, whilst the HSR

reactivity and the response to ESC decreased over 7 days

of storage; however, this was not significantly different

between groups (Fig. 2). Subsequently, the percentage of

the total extracellular LDH remained stable and at low

levels in both INTERCEPT and untreated units (Fig. 2).

Additionally, swirling remained at the highest level at all

times in all INTERCEPT and untreated units (data not

shown).

No statistically differences were observed in the

expression levels of CD62P, PECAM-1 or CD42b at any

time-point between groups (Fig. 3). Related to the

increase in PLT activation, sCD40L accumulated during

storage showing an increased release in all units but

with no difference observed between INTERCEPT-treated

vs. untreated units at any time-point (Fig. 3). Through-

out storage, PAC-1 expression was equal between the

two groups (Fig. 4a,b).

Effect on mitochondrial membrane potential

Throughout storage, the MMP (JC-1-positive PLTs)

decreased slightly in all INTERCEPT-treated and untreated

units but was maintained at similar high levels (NS) with

>90% maintenance of MMP on day 7 (Fig. 5a–d) as deter-

mined by equivalence in fold change.

Fig. 3 Expression of the activation marker

CD62P, PECAM-1 expression, release of sCD40L

and expression of CD42b of control (□) and
PCT (■) PLTs on Day 2, 5 and 7 of storage. The

bars represent the mean percentage – SD of

positive PLTs (n = 8).
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Discussion

Pathogen inactivation of PLT concentrates has the poten-

tial to improve blood safety and possibly increase the

shelf life of labile blood products, since it addresses the

issues associated with bacterial contamination. This study

evaluated potential effects of the INTERCEPT treatment

on in vitro functional, phenotypic and mitochondrial

properties of DD-BC PLTs during storage in SSP+ for

7 days. Platelet quality was assessed using a wide range

of in vitro assays designed to measure PLT metabo-

lism, function and activation. Overall, INTERCEPT-treated

(a)

(b)

Fig. 4 Expression of a conformational epitope on the GPIIb/IIIa complex of activated PLTs, as measured by surface expression of PAC-1. The expression

of PAC-1 was measured by flow cytometry on unfixed PLTs after ADP stimulation. (a) Representative staining from one experiment at day 7. The speci-

ficity of the PAC-1 binding was demonstrated by staining in the presence of RGDS. (b) Expression of PAC-1 in control (□) and PCT (■) PLTs on Day 2, 5

and 7 of storage. The bars represent the mean percentage – SD of positive PLTs (n = 8).
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PLTs with subsequent storage remained largely unaf-

fected.

Measurements of extracellular parameters offer, on one

hand, valuable insights into the equilibrium among the

cytosolic pathways and the mitochondrial oxidative path-

ways of PLTs during storage, as changes caused by PLTs

may disturb metabolic homeostasis are linked to

increased cytosolic glycolysis [25–27], PLT activation [25,

28–32], aggregation and release reactions [23, 25, 28,

33–36]. On the other hand, other physiological chal-

lenges, not related to increased glycolytic flux and

accelerated cellular metabolism, may affect metabolic

homeostasis.

In our study, we observed decreased pH and glucose

concentration in the INTERCEPT-treated units. Although

the pH declined following INTERCEPT treatment, it

remained at a similar level [37] or higher than reported in

previous studies [29, 38]. In contrast to the previous stud-

ies, this finding seems to be related to other physiological

challenges, rather than an increase in the glycolytic flux

caused by the UV-treatment. This suggestion is supported

by the equivalence in the glucose consumption/lactate

production rate as well as overall equivalence in the other

biochemical markers over time between INTERCEPT-trea-

ted and untreated units. Moreover, the pH in all INTER-

CEPT-treated fractions at around 7 was well above the

(a)

(b)

(c) (d)

Fig. 5 Maintenance of mitochondrial membrane potential (MMP) expressed as JC-1-positive PLTs. The expression of JC-1 was measured by flow cytome-

try on PLTs. (a) Representative quadrants derived from flow cytometric scatter plots at Day 2, 5 and 7 and the positive control. (b) Representative stain-

ing from one experiment at day 7. (c) Expression of JC-1 in control (□) and PCT (■) PLTs on Day 2, 5 and 7 of storage. The bars represent the mean

percentage – SD of positive PLTs (n = 8). (d) Fold change in the maintenance of MMP was calculated from the means.
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Council of Europe recommendations (pH >6�4). This along
with continued O2 consumption and the ability to gener-

ate an equivalent concentration of ATP [39, 40] indicates

that oxidative phosphorylation was likely maintained in

these PLTs.

With exception of storage lesion and ageing effects

which were detected for treated as well as untreated units,

we observed no statistically significant increase in the

activation levels as compared with the untreated units.

Additionally, INTERCEPT treatment did not affect the

ability of the PLTs to respond to agonists (ESC and PAC-

1), indicating cellular responsiveness was maintained rel-

ative to their activation state. Furthermore, all HSR scores

were well above the level for which poor in vivo viability

has been predicted to occur [41]. Also the expression

level of the GPIb-IX-V complex [42–44] and maintenance

of the PECAM-1 (CD31) levels of tested PLTs [45, 46]

strengthen the conclusion that cellular effects cannot be

the cause for the extracellular differences observed.

Our results on the DD PLTs seem to agree with the

functional integrity of the INTERCEPT-treated PLTs pro-

ven earlier in a series of in vitro assays [11, 47, 48] and

clinical trials [12–14].

A large variety of factors is released from PLTs [49, 50]

and is found present in PLT concentrates [25, 33, 51–54].

Because of the potentially harmful effects [35, 55–58] of

PLT derived factors, it is of major importance that a PI

technology does not exacerbate such negative events. The

data presented in this study demonstrate accumulation of

sCD40L in all PLT units during storage. This progressive

increase in the activation levels per PLT population agrees

with the previously observed relationship between activa-

tion levels and cytokine release [24 51, 53, 59]. However,

this finding was not significantly different between

INTERCEPT-treated vs. untreated units.

Previously published data suggest impaired mitochon-

dria-based respiration and lower maintenance of cell

quality in INTERCEPT-treated PLTs [16]. However, these

results are not in line with our results. In our study, no

shift towards anaerobic glycolysis was observed due to

depolarization of the PLT MMP resulting in lowering of

ATP and less maintenance of cell quality. Our findings

are instead in good accordance to the studies by Hechler

et al. [15]. Moreover, our measurement of the JC-1 posi-

tive cells (>90% by means) is in agreement with our mea-

sured ATP values. Accordingly, we found no evidence for

a decline in the ATP values, symptomatic of maintained

mitochondrial function after INTERCEPT treatment. If

mitochondrial function was affected, then the ATP levels

would be expected to decline, since approximately 85%

of the ATP values are suggested to be generated via the

oxidative part of the metabolism [40].

Our results indicate no support for an inverse relation-

ship between mitochondrial dysfunction and INTERCEPT

treatment of PLTs. One reason for the conflicting data is

likely the critical role for other factors influencing the

PLTs during storage [26], which act in concert with the

potential effects of INTERCEPT treatment [14, 48].

The constant quality of the INTERCEPT-treated PLTs

over 7 day of storage in comparison with the untreated

PLTs was somewhat surprising, given that PLTs, even

under the best of circumstances exhibit a substantial

amount of biochemical changes, as judged by the differ-

ent in vitro variables. One possible explanation for the

positive results could be that the manual preparation

method was gentle [60] and optimized storage solutions

[61, 62] and bags [26, 63] were used. These factors seem

to play a major role regarding PLT quality associated with

PI treatment.

In summary, our data demonstrate that photochemical

PI of DD-BC PLT concentrates with INTERCEPT Blood

System had no influence on the PLT in vitro quality over

the 7 day of storage. However, whether in vivo efficacy

of INTERCEPT-treated PLTs is affected may require fur-

ther clinical evaluation.
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