

Department of Cardiology, Pneumology and Vascular Medicine

Challenges to device therapy Devices therapy in heart failure is the perty over or is it just the beginning of personalized care?

Prof. Dr. med. Klaus Witte MD

Professor of Cardiology, Universitätsklinik, RWTH, Aachen, DE and Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, GB

UNIKLINIK RWTHAACHEN

Klaus Witte: conflicts of interest

Investigator-initiated research funding (charitable/NGO):

- HRUK New and Evolving Technologies grant to Dr John Gierula and Dr Klaus Witte
- NIHR funding for Dr John Gierula (Post-doctoral fellowship),
- NIHR funding for Dr Maria Paton (Post-doctoral fellowship)
- ESC Nursing Fellowship for Melanie McGinlay
- BHF PhD fellowship Dr Sam Straw

Investigator initiated research funding (commercial):

- Unrestircted research grant for MASTER-AF from Cardiac Dimensions (RWTH Aachen)
- Unrestricted research/training grant for a Fellowship Program to the University of Leeds from Medtronic UK
- Unrestricted Research funding to Dr John Gierula and Dr Klaus Witte from Medtronic UK
- Unrestricted research grant for a study in prognosis in HFrEF to the University of Leeds from Astra Zeneca UK

Speaker fees and direct financial support for educational meetings:

- Astra Zeneca, Pfizer, BMS, Napp Pharmaceuticals, Novartis, Bayer, Cardiac Dimensions, Abbott, Microport, Medtronic
- 'Device Therapie am Dreilaendereck' (01.06.2022)

Advisory Board activity:

Astra Zeneca, Bayer, Cardiac Dimensions

Indirect editorial assistance for writing projects:

• Bayer, Medtronic

Commercially supported research activity:

- UK PI: TRANSITION (Novartis)
- UK PI: REDUCE-FMR (Cardiac Dimensions)
- UK PI and steering group: EMPOWER (Cardiac Dimensions)
- DSMB: RECOVER (Novartis)
- DSMB (Chair): ASTRAL (Microport)
- DE PI: CINCH (Cardiac Dimensions)
- DE PI: APOLLO (Microport)
- PI MASTER-AF (Cardiac Dimensions)

What do we mean?

CRT-P

Valves

ICD / CRT-D

Chronic heart failure

Chronic and persistent heart impairment:

Symptoms of breathlessness, fatigue or congestion 500,000 people in the UK, 26 million across the globe

High hospitalisation rate

Shortened life expectancy

Elevated risk of death due to

1) arrhythmia

2) deteriorating HF

3) co-morbidities and frailty

Proven medical and device treatment

HFrEF: Positive trials 2001–2020

RNTHAACHEN

Established medical therapy improves prognosis

Invents propranolol (1962) Invents cimetidine (1973) Knighted 1981 Nobel Prize 1988

McMurray JJV, et al. N Engl J Med 2019;381:1995-2008

RNTHAA

SGLT2i improve cardiovascular death or hospitalisation for heart failure

40 -

20 -

10 -

Estimated cumulative incidence function (%)

Patients at risk

Placebo Empagliflozin

Empagliflozin significantly reduced the composite risk of cardiovascular death or hospitalisation for heart failure vs placebo

Days after randomisation

*Based on the 25% RRR (5.2% ARR) demonstrated for reduction in CV death or HHF, the patients who would need to have been treated with empagliflozin to prevent one primary event was 19 (95% CI, 13 to 37). Cox regression model including covariates age, baseline eGFR, geographic region, baseline diabetes status, sex, LVEF and treatment. ARR: absolute risk reduction; CI: confidence interval; CV: cardiovascular; eGFR: estimated glomerular filtration rate; HR: hazard ratio; LVEF: left ventricular ejection fraction; NNT: number needed to treat; RRR: relative risk reduction Packer M *et al.* N *Engl J Med.* 2020;383:1413–1424.

The Four Pillars of Heart Failure

A new approach

For every patient

Survival at 1 year has improved

UK Heart 2

Challenge: Mode of death in CHF 2006-2009 (ICD recipients excluded)

Challenge: CRT-D v CRT-P

COMPANION

- 600 CRT-P / 600 CRT-D / 300 OPT
- QRS >120ms
- EF<35%
- NYHA class III / IV
- Hosp previous 12/12

Challenge: CERTITUDE (CRT-P v CRT-D)

- Prospective, multicentre cohort study, 1705 patients
- CRT-P patients were older, with more advanced HF, and co-morbidities when compared with CRT-D recipients.
- At 2-years, CRT-P patients had 2-fold higher mortality than CRT-D
- Excess mortality among CRT-P subjects was almost entirely related to non-SCD
- Limited benefit from a defibrillator.

Marijon et al EHJ 2015

Challenge: DANISH trial

Challenge: SCD and Total Mortality in HFrEF

Table 2 Rates of therapy and all-cause mortality in treatment arm of selected RCTs and the Israeli ICD registry

SCD risk is reducing....

"Yeah, I see him too...But nobody wants to talk about it!"

Things have changed in heart failure...

Do we still need: defibrillators?

Insurance covers unexpected and unpredictable events: if they were expected or predictable we wouldn't need insurance

Preventing arrhythmic death in HFrEF

mmun mann	外州			\sim	
	Norman	WH 7	A)	V	
		6852			

The reality....

After 7 years of ARNi Do we still need devices?

(even in a well organised/funded healthcare system)

Persistent risk

Even with Sac/Val, the risk of mortality (and hospitlaisation) persists

Time

Tolerability

(even in a well organised/funded healthcare system)

Immediate protection

(A) Change in LVEF (B) Change in LVESV 12.5 +10.0 P-value overall <.001 10.0 Change in LVEF (%) in LVESV (%) 7.5 -10.0 Change 5.0 -20.0 2.5 -30.0 P-value overall = .031 -40.0 0.0 24/26 mg 49/51 mg 97/103 mg 24/26 mg 49/51 mg 97/103 mg Dose of Sacubitril/Valsartan Dose of Sacubitril/Valsartan

n=141 patients (5 died and 4 stopped taking the drug over 118 days)

100% on ACEi/ARB at outset (mean 57% of target) 65% on >100mgBD (mean dose 53% of target: 35% on a dose associated with progression)

We consistently don't get the drugs right

US and Netherlands: CHAMP-HF (>3500 patients) and CHECK-HF (>10,000)

ACEI = angiotensin converting enzyme inhibitor; ARNI =angiotensin receptor- neprliysin inhibitor; ARB = angiotensin receptor blocker; BB = beta blockers, SBP = systolic blood pressure

...robust benefit from ICDs in the remodelled cohort in SCDHeFT

Adabag et al; JAMA-Cardiol 2017

Risk Factors for SCD

Akhtar et al., Curr cardiol report, 2019

What about other contributors? - scar / fibrosis?

Why are we relying on LVEF? Because it's fairly good and easy

- n=472,
- mean EF 37%
- midwall fibrosis +/-
- LVEF falls out in multivariable analysis

Sudden death persists especially in those with co-morbidities

Are we casting aside a generation of data?

Risk Groups		Odds Ratio (95% confidence interval)	Mortality Reduction
Spontaneous or inducible ventricular arrhythmias	AVID (n = 1,016)	0.59 (0.43, 0.81)	8.2%
	CIDS (n = 659)	0.81 (0.57, 1.14)	4.3%
	CASH (n = 288)	0.71 (0.43, 1.18)	8.1%
	MADIT I (n = 196)	0.30 (0.15, 0.59)	22.8%
	MUSTT (n = 514)	0.34 (0.22, 0.53)	23.0%
Heart failure or LV dysfunction alone	MADIT II (n = 1,232)	0.68 (0.50, 0.92)	5.4%
	AMIOVIRT (n = 103)	0.86, (0.27, 2.75)	1.7%
	CAT (n = 104)	0.76 (0.33, 1.80)	5.4%
	COMPANION (n = 903)	0.64 (0.46, 0.90)	7.3%
	SCD-HEFT (n = 1,676)	0.70 (0.56, 0.87)	6.8%
	DEFINITE (n = 458)	0.66 (0.39, 1.11)	5.2%

ESC Heart Failure Guidelines 2021

Trends in Sudden Cardiac Death

1: Without control groups from RALES, BEST, and MERIT-HF the line is relatively flat 2: The SCD-HeFT control mortality is equivalent to the PARADIGM therapy group

3. 80% of people in SCDHeFT were on a beta-blocker

Shen L *NEJM* 2017 (Courtesy Dr Meine Utrecht)

SWEDE-HF CRT-D v CRT-P

1 yr ACM 16.9% v 21.6% 1 yr CV mortality 13.8% v 18.7%

Courtesy Benedikt Schräge

Why the argument – just give everyone CRT-D!

- Complications
- Battery life
- False shocks
- Inappropriate shocks
- Complications

Cost Effectiveness – optimizing care for society

Balancing personalised care with societal care

Cost effectiveness of CRT-D v CRT-P in Germany

Straw, Mullens, Witte *Heart* 2022

Hadwiger et al EHJ 2022

Prediction of SCD and total mortality – 'benefit of ICD'

Towards personalised care:

Can we discern people at higher risk of SCD and lower risk of NCD or HF death?

Courtesy Benedikt Schräge

Prediction of SCD and total mortality - 'benefit of ICD'

- Multiple imputation with chained equation to handle missing data
- Patients were stratified in 4 risk groups based on predicted all-cause mortality risk and predicted proportion of SCD
 - The Seattle Heart Failure Model was used to predict the mortality risk (above vs. below/equal to median)
 - The Seattle Proportional Risk Model was used to predict the proportion of SCD (above vs. below/equal to 45%)
 - Logistic regression model to evaluate predictors of ICD use
- Cox regression model for outcome
 - Primary endpoint: 3-year all-cause mortality
 - Secondary endpoint: 3-year cardiovascular mortality

. rediction of SCD and total mortality – 'benefit of ICD'

rediction of SCD and total mortality – 'benefit of ICD'

SRESET CRT

RCT of CRT-P v CRT-D (2018 with follow-up until 2024) Target 1356 patients, currently 836 recruited

Aristotle

384-322 BC

Donald Rumsfeld 1932-2021 AD

http://www.understandinginnovation.wordpress.com

The more you know, the more you realize how much you don't know

Do we still need: Cardiac resynchronisation therapy (CRT)?

Do we still need: CRT?

Maartens P et al. Cardiovasc Ther 2018 Straw S et al. J Cardiovasc Med 2021

Drug optimisation is facilitated

	Patients, n (%)			Daily dose (% of target)		
	Implantation	6 months	P-Value	Implantation	6 months	P-Value
BB	620 (75)	724 (88)	<0.001	43 (22–75)	53 (27–90)	< 0.001
ACEi/ARB	747 (90)	753 (91)	0.51	74 (44–97)	78 (45–100)	0.02
Aldosterone antagonists	475 (58)	490 (59)	0.28	51 (38–65)	49 (36–58)	0.46
Loop diuretic	654 (79)	676 (82)	0.05	80 (40-120)	80 (40-140)	0.22

Covariate-adjusted survivor estimate

RNTHAACHEN

Do we still need: (Remote) Monitoring?

Monitoring: who, when, what, why ... ACTION

Identify those requiring more care early

Remote monitoring in heart failure

Our monitoring comfort zone....

We know who to monitor.....

Cubbon et al Heart 2013

...and we know (sort of) what to monitor

- Partners-HF
 - 694 patients with CRT-D
 - Series of variables collected monthly
 - 11.7 months (2)
 - 90 patients with 141 hospitalisations
 - Binary code requiring 2 criteria (of 8)

AF duration Ventricular rate during AF Fluid index Patient activity Night heart rate Heart rate variability %CRT pacing ICD shock ...and we know that we can (sort of) predict:

HF hospitalisation HF re-hospitalisation

...and we think we can reduce decision time

CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) Trial

Table 1	Protocol Required Alert Prog	ramming (Clinical Events)	
Ale	rt/Clinical Event	Remote Arm	In-Office Arm
Medtronic (CareLink Home Monitor	Yes	No (not provided)
Clinical ma	nagement alerts		
AT/AF da	aily burden	Automatic clinician alert (12 h/day)	Off
Ventricul	ar rate during AT/AF	Automatic clinician alert (120 beats/min for \geq 6 h AT/AF per day)	Off
Number	of shocks delivered	Automatic clinician alert (2 shocks)	Off
All thera	pies exhausted in a zone	Automatic clinician alert (on)	Off
Lead/devic	e integrity alerts		
Lead imp	pedance out of range	Automatic clinician alert + audible patient alert (nominal ranges)	Audible patient alert (nominal ranges)
VF detec	tion/therapy off	Automatic clinician alert + audible patient alert (nominal ranges)	Audible patient alert (nominal ranges)
Low batt	ery voltage RRT	Automatic clinician alert + audible patient alert (nominal ranges)	Audible patient alert (nominal ranges)
Excessive	e charge time EOS	Automatic clinician alert + audible patient alert (nominal ranges)	Audible patient alert (nominal ranges)

'Automatic clinician alerts were determined by clinicians to be meaningful in 62% while only 24% of routine in-office device follow-ups provided new and

wein the meaningful information'

Crossley G et al. J Am Coll Cardiol 2011;57:1181–9)

Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial

Gerhard Hindricks, Milos Taborsky, Michael Glikson, Ullus Heinrich, Burghard Schumacher, Amos Katz, Johannes Brachmann, Thorsten Lewalter, Andreas Goette, Michael Block, Josef Kautzner, Stefan Sack, Daniela Husser, Christopher Piorkowski, Peter Søgaard, for the IN-TIME study group*

A Primary End Point

	RM N=824	Usual care N=826
Age (mean ± SD) years	69.5±10.3	69.5±10.0
Male %	86	86
NYHA Class II III IV	585 (71%) 238 (29%) 1 (0.1%)	561 (68%) 263 (32%) 2 (0.2%)
LVEF (mean ± SD)(%)	29.9 ± 10.2	30.0 ± 9.8
Documented coronary artery disease	563 (69%)	548 (67%)
Diabetes mellitus	208 (25%)	225 (27%)
History of atrial fibrillation	339 (41%)	338 (41%)
Type of CIED ICD CRT-D CRT-P	275 (33%) 442 (54%) 107 (13%)	276 (33%) 438 (53% 112 (14%)

Morgan et al; Eur Heart J 2017

Not without harm

- DOT-HF
 - 335 patients
 - Implanted devices, free 100% monitoring
 - Intrathoracic impedance and other variables with audible alert
 - Increased hospitalisations and out-patient visits,
 - No difference in outcome

Maybe it's not enough time or enough certainty? How to buy even more time or more certainty

* Graph adapted from Adamson, P. B. (2009). Pathophysiology of the transition from chronic compensated and acute decompensated heart failure: New insights from continuous monitoring devices. Current Heart Failure Reports, 6(4), 287-92. https://www.ncbi.nlm.nih.gov/pubmed/19948098

CardioMEMS[™] HF System for the Management of HF

Monitoring with CardioMEMS[™] HF System Leads to Reduction in Mean PA Pressure from Baseline

SECONDARY ENDPOINT: Targeting PA pressures and titrating medications results in reduction of mean PA pressure over time.

Primary Efficacy Endpoint Met with Significantly Reduced Heart Failure Hospitalization

Thomas Huxley 1825-1895

'the deepest sin against the human mind is to believe things without evidence'

Do we still need:

'Response'

Population level 'response'

- QRS >150ms (or 120ms with simple dyssynchrony)
- EF<35%
- NYHA class III / IV

Challenges of individual 'response': the 'Disease Modification' approach

Cubbon and Witte *BMJ 2009* Mullens *et al EJHF* 2021

So... why do we care about response?

Decision regarding indication?

ESC GUIDELINES

2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy

Developed by the Task Force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC)

With the special contribution of the European Heart Rhythm Association (EHRA)

Authors/Task Force Members: Michael Glikson * (Chairperson) (Israel), Jens Cosedis Nielsen* (Chairperson) (Denmark), Mads Brix Kronborg (Task Force Coordinator) (Denmark), Yoav Michowitz (Task Force Coordinator) (Israel), Angelo Auricchio (Switzerland), Israel Moshe Barbash (Israel), José A. Barrabés (Spain), Giuseppe Boriani (Italy), Frieder Braunschweig (Sweden), Michele Brignole (Italy), Haran Burri (Switzerland), Andrew J. S. Coats (United Kingdom), Jean-Claude Deharo (France), Victoria Delgado (Netherlands), Gerhard-Paul Diller (Germany), Carsten W. Israel (Germany), Andre Keren (Israel), Reinoud E. Knops (Netherlands), Dipak Kotecha (United Kingdom), Christophe Leclercq (France), Béla Merkely (Hungary), Christoph Starck (Germany), Ingela Thylén (Sweden), José Maria Tolosana (Spain), ESC Scientific Document Group

Document Reviewers: Francisco Leyva (CPG Review Coordinator) (United Kingdom), Cecilia Linde (CPG Review Coordinator) (Sweden), Magdy Abdelhamid (Egypt), Victor Aboyans (France), Elena Arbelo (Spain), Riccardo Asteggiano (Italy), Gonzalo Barón-Esquivias (Spain), Johann Bauersachs (Germany), Mauro Biffi (Italy), Ulrika Birgersdotter-Green (United States of America), Maria Grazia Bongiorni (Italy), Michael A. Borger (Germany), Jelena Čelutkiene (Lithuania), Maja Cikes (Croatia), Jean-Claude Daubert (France), Inga Drossart (Belgium), Kenneth Ellenbogen (United States of America), Perry M. Elliott (United Kingdom), Larissa Fabritz (United Kingdom), Volkmar Falk (Germany), Laurent Fauchier (France), Francisco Fernández-Avilés (Spain), Dan Foldager (Denmark), Fredrik Gadler (Sweden), Pastora Gallego Garcia De Vinuesa (Spain), Bulent Gorenek (Turkey), Jose M. Guerra (Spain), Kristina Hermann Haugaa (Norway), Jeroen Hendriks (Netherlands), Thomas Kahan (Sweden), Hugo A. Katus (Germany), Aleksandra Konradi (Russia), Konstantinos C. Koskinas (Switzerland), Hannah Law (United Kingdom), Basil S. Lewis (Israel), Nicholas John Linker (United Kingdom), Maja-Lisa Løchen (Norway), Joost Lumens (Netherlands), Julia Mascherbauer (Austria), Wilfried Mullens (Belgium), Klaudia Vivien Nagy (Hungary), Eva Prescott (Denmark), Pekka Raatikainen (Finland), Amina Rakisheva (Kazakhstan), Tobias Reichlin (Switzerland), Renato Pietro Ricci (Italy), Evgeny Shlyakhto (Russia), Marta Sitges (Spain), Miguel Sousa-Uva (Portugal), Richard Sutton (Monaco), Piotr Suwalski (Poland), Jesper Hastrup Svendsen (Denmark), Rhian M. Touyz (United Kingdom), Isabelle C. Van Gelder (Netherlands), Revin Vernooy (Netherlands), Johannes Waltenberger (Germany), Zachary Whinnett (United Kingdon), Klaus K. Witte (United Kingdom)

Eur Heart J 2021: 12:1-94

Recommendations	Class	Leve
LBBB QRS morphology		
CRT is recommended for symptomatic patients with HF in SR with LVEF ≤35%, QRS duration ≥150 ms, and LBBB QRS morphology despite OMT, in order to improve symptoms and reduce morbidity and mortality.	I.	А
CRT should be considered for symptomatic patients with HF in SR with LVEF ≤35%, QRS duration 130–149 ms, and LBBB QRS morphology despite OMT, in order to improve symptoms and reduce morbidity and mortality.	lla	В
Non-LBBB QRS morphology		
CRT should be considered for symptomatic patients with HF in SR with LVEF ≤35%, QRS duration ≥150 ms, and non-LBBB QRS morphology despite OMT, in order to improve symptoms and reduce morbidity.	lla	В
CRT may be considered for symptomatic patients with HF in SR with LVEF ≤35%, QRS duration 130–149 ms, and non-LBBB QRS morphology despite OMT, in order to improve symptoms and reduce morbidity.	llb	В
QRS duration		
CRT is not indicated in patients with HF and QRS duration <130 ms without an indication for RV pacing.	ш	Α

So... why do we care about response?

Decision regarding indication?

Decision regarding post implant management

Challenges of individual 'response': the 'Disease Modification' approach

Cubbon and Witte *BMJ 2009* Mullens *et al EJHF* 2021

What is advanced heart failure and how do we spot it?

All of the following:

- 1. Severe and persistent symptoms of heart failure (NYHA III)
- 2. Severe cardiac dysfunction (one of)
 - LVEF≤30%
 - **RV** failure
 - Severe non-operable valve or congenital abnormalities or congenital Persistently high NT-pro-BNP
- 3. Functional evidence of cardiac dysfunction (one of)
 - Recurrent congestion or pulmonary oedema requiring i.v. diuretics
 - Low output state requiring positive inotropes
 - Malignant arrhythmia causing >1 unplanned hospital visit in 12 months
- 4. Severe impairment of exercise capacity (<300m or <12ml/kg/min or <50% expected)

So... we *do* care about response

(but not for decision to implant)

Decision regarding post implant management When and what do we assess? When do we do what to whom?

Assessing response following CRT

Systems/payers/doctors

Patients/doctors

Death Hospitalisation LV structure and function Symptoms Quality of life Functional capacity Hospitalisation

Cost effectiveness

Clinical effectiveness

Response, Weighted Percentage

Symptom control consistently features more highly than survival

Stansky et al. JAMA Cardiol 2019
Response to CRT: a hierarchical set of clinical criteria

CLINICAL RESPONSE TO CRT

A responder is defined as a patient who at one year is still alive, is free from any HF event, and who *improves* NYHA class, global patient assessment or Quality of Life.

> Mullens et al. *EJHF* 2020 Gold et al. *JACC EP* 2021

Remodelling (lack of it) at 6m predicts

30%

25%

20%

15%

5%

0%

Number at Risk

<15%

≥15%

0

170

183

Mortality Rate

p = 0.0004

12

166

177

RANDELAA

Remodelling *or* symptoms?

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2019 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Evaluation, Management, and Outco^B of Patients Poorly Responsive to Cardiac Resynchronization Device Th

Niraj Varma, MD, PhD,^a John Boehmer, MD,^b Kartikeya Bhargava, MD,^c Dale Yoo, MD,^d Fabi Mariarosa Costanzo, MD,^f Anil Saxena, MD,^g Lixian Sun, MS,^h Michael R. Gold, MD, PHD,ⁱ Ja John Gill, PhD,^h Angelo Auricchio, MD, PhD^k

RANTHAA

Site-Defined Responder

r

Interaction between echocardiography and clinical status

50

45

Cumulative Rate of Heart Failure Hospitalization and Cardiac Death

What about BNP?

n=43 Change in BNP at three months predicted improvement at 12 and 24 months

Chronic heart failure

McDonagh T et al. EHJ 2021;42:3599-3726

Forget pre-implant predictors of non-response (to determine indication for CRT implantation)

Focus on the prediction that non-response offers (to determine post-CRT management)

We still know too little

- Monitoring
- ICD v no ICD
- CRT-P v CRT-D
- Mitral interventions
- Balancing up society (achieving equity)
- Personalisation of device delivery would achieve all of these aims
- Requires:
 - An open mind
 - Good data
 - Lack of bias

Do we still need devices?

- 1) Decide on ICD or not do not use anecdote
- 2) CRT early (even before or to facilitate OMT)
- 3) Monitor and optimise response to CRT in a dedicated clinic

- 5) Assess response to CRT at 3-6 months (symptoms)
- 6) Decide early and review patients progressing to advanced heart failure,
- 7) React rapidly (refer early) to early signs of progression
- 8) Move up to treatments for advanced HF early
- 9) Make early decision for palliative care

UNIKLINIK RWTHAACHEN

